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Group
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Questions related to Permutation Group

1.

[lustrate Cayley’s Theorem by calculating the left regular representation for the
group Vi = {e,a,b,c} where a> = b*> = ¢* = e¢,ab = ba = c,ac = ca = b,bc =
cb = a.

Show that A5 has 24 elements of order 5, 20 elements of order 3, and 15 elements
of order 2.

Show that if n > m then the number of m-cycles in S,, is given by n(n — 1)(n —
2)...(n—m+1)/m.

Let o be the m-cycle (12...m). Show that ¢* is also an m-cycle if and only if ¢
is relatively prime to m.

Let n > 3. Prove the following in S,,.

(a) Every permutation of S, can be written as a product of at most n — 1
transpositions.

(b) Every permutation of S, that is not a cycle can be written as a product of
at most n — 2 transpositions.

. Let o be a permutation of a set A. We say that o moves a € A if o(a) # a. Let

S4 denote the permutations on A.

(a) If A is a finite set then how many elements are moved by a n-cycle o € S47
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(b) Let A be an infinite set and let H be the subset of S4 consisting of all ¢ € Sy
such that o only moves finitely many elements of A. Show that H < Sy.

(c) Let A be an infinite set and let K be the subset of S, consisting of all
o € S, such that o moves at most 50 elements of A. Is K < S47 Why?

Show that if o is a cycle of odd length then o2 is a cycle.

. Let p be a prime. Show that an element has order p in .S, if and only if its cycle

decomposition is a product of commuting p-cycles. Show by an explicit example
that this need not be the case if p is not prime.

Show that if n > 4 then the number of permutations in S,, which are the product
of two disjoint 2-cycles is n(n — 1)(n — 2)(n — 3)/8.

Let b € S; and suppose b* = (2143567). Find b.
Let b = (123)(145). Write 0% in disjoint cycle form.
Find three elements o in Sq with the property that o® = (157)(283)(469).

Show that if H is a subgroup of S,,, then either every member of H is an even
permutation or exactly half of the members are even.

Suppose that H is a subgroup of .S,, of odd order. Prove that H is a subgroup of
A,.

Prove that the smallest subgroup of S,, containing (12) and (12...n) is S,. In
other words, these generate S,,.

Prove that for n > 3 the subgroup generated by the 3-cycles is A,,.

Prove that if a normal subgroup of A,, contains even a single 3-cycle it must be
all of A,,.

Prove that A5 has no non-trivial proper normal subgroups. In other words show
that As is a simple group.

Show that Z(S,,) is trivial for n > 3.

Show that two permutations in S, are conjugate if and only if they have the
same cycle structure or decomposition. Given the permutation z = (12)(34),
y = (56)(13), find a permutation a such that a~'za = y.
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Solution of above problems

1. Tllustrate Cayley’s Theorem by calculating the left regular representation for the
group Vy = {e,a,b,c} where a> = b* = ¢ = e¢,ab = ba = c,ac = ca = b,bc =
cb = a.

Solution :

Let V4 = {e,a,b,c}. Now computing the permutation o, induced by the action
of left-multiplication by the group element a.

a.e = ae = a and so o.(e) = a
a.a =aa =a’ = e and so g,(a) = e
a.b = ab = ¢ and so o4(b) =c
a.c = ac = b and so og(c) =b

Hence o, = (ea)(bc).

Now computing o, induced by the action of left-multiplication by the group

element b.

b.e = be = b and so oge) =b
b.a = ba = ¢ and so og(a) =c
b.b =bb =b* =e and so 0,(b) = ¢
b.c = bc = a and so og(c) =a

Hence o, = (eb)(ac).

Similarlly Computing o, induced by the action of left-multiplication by the group
element c.

c.e = ce = c and so g,(e) = ¢

c.a = ca=bandsoo,(a) =b

c.b =cb =aandso g,(b) = a

c.c=cc=c*=eandsoo,lc)=e

Hence 0. = (ec)(ab).

Which explicitly gives the permutation representation V; — V) associated to
this action.

2. Show that A5 has 24 elements of order 5, 20 elements of order 3, and 15 elements
of order 2.

Solution :

Since we can decompose any permutation into a product of disjoint cycle. In Sy ,
since disjoint cycle commutes. Let V5 = {e, a,b, ¢, d} Here an element of S5 must
have one the following forms:

(i) (abcde) - even
(ii) (abc)(de) - odd (even P * odd P)

(iii) (abc) - even
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(iv) (ab)(cd) - even (odd P * odd P)
(v) (ab) - odd

(vi) (e) -even
So element of Aj; is of the form (i), (iii), (iv) and (vi). As we know that, when
a permutation is written as disjoint cycles, it’s order is the lem (least common
multiple) of the lengths of the cycles.

(i) (abcde) has order 5
(iii) (abc) has order 3
(iv) (ab)(ed) has order 2

(vi) (e) has order 1
Now since elements of order 5 in A are of the form (i). There are 5! distinct
expression for cycle of the form (abcde) where all a, b, ¢, d, e are distinct. since
expression representation of the element of type

(abede) = (bedea) = (cdeab) = (deabe) = (eabed) are equivalent. So total ele-

4 2x1
ments 0fo1rdelr5a1re5>< X3 X2 X = 24.

Now for elements of order 3. Since elements of order 3 in A; is of the form (abc).
Here there are 5 choices for a, 4 choices for b and 3 choices for c. so there are
5 x 4 x 3 = 60 possible ways to write such a cycle. Since expression representa-
tion of the element of type (abc) = (bca) = (cab) are equivalent.So total no. of

elements of order 3 in Aj are 3= 20.

Here since even permutation of order 2 are of the form (ab)(cd). so there are
5 x 4 x 3 x 2 ways to write such permutation. Since disjoint cycles commute
there, so there are 8 different ways that differently represent the same permuta-

tions :-

(ab)(cd) = (ab)(dec) = (ba)(de) = (ba)(ed) = (cd)(ab) = (de)(ab) = (dc)(ba) =
(cd)(ba).

So there are M = 15 elements of order 2.

{No. of ways of selecting r different things out of n is nPr }

3. Show that if » > m then the number of m-cycles in S, is given by
nn—1)n—2)..(n—m+1)

m
Proof :

For any given S,,, there are n elements in S, = {1,2,3,...m...n}. so we must have
n-choices for 1st element, then n-1 choices for 2nd element, n-2 choices for 3rd
element and so on... and we have n-m+1 choices for m element etc. So there
are total no. of n(n-1)(n-2)...(n-m+1) for a m-cycles.

Now we want to count m-cycles in S, since for 2-cycles (ab) = (ba)

{two equivalent notation , i.e same permutation}
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For 3-cycles (a,b,c) = (b,c,a) = (¢,a,b) {i.e 3-equivalent notation}

For 4-cycles (a,b,c,d) = (b,¢,d,a) = (c,d,a,b) = (d,a,b,c) {four equivalent
notation}

Similarly for m-cycles there are m-equivalent notation for any permutations.
Now, Since we have, n(n — 1)(n — 2)...(n — m + 1) choices to form a m-cycle in
which there are m-equivalent notations for any permutation of length m.

So the no. of m-cycles in 5, is

n(n—1)(n—2)..(n —m+1)

4. Let o be the m-cycle (12...m). Show that o’ is also an m-cycle if and only if
is relatively prime to m.

Proof :

First we note that if 7 is k cycle then |7| = k
since o'(x) = x+i mod m for any x, 1 <z <m

Claim : o' = (0'(1)0%(2)...0%(m))

we prove it by contradiction

Let i=1. Then the statement is obviously true.
Suppose that

ol = (61 (1)o"1(2)...0 (m))

then o' = (0" ') = o{o"1(1)...07 (m)}
t

Since, here o sends o'1(i) to o?(1),

thus o' = (6" 1(1)...c%(m))

— o' = (o1 (1). o (m))

Since o'(m) = m+i mod m =i mod m and ¢'~!(1) = 1+i-1 mod m = i mod m
i.e o'(m) =o""1(1)

— o' is an m-cycle.

..ot
..ot

Converse part

Suppose o' is an m-cycle and suppose that (i,m) = d > 1. (we prove it by
contradiction)

then there exists k,n € N such that i=kd and m=nd,

since, (0))" = (o*d)" = gkt = g™k = (g™)F =]

where [ is the identity permutation.

Hence |of| < n < m.

which is contradiction, since ¢’ is an m-cycle and thus |¢’| = m. Thus i is
relatively prime to m.
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5. Que. No.05 Let n > 3. Prove the following in S,,.

(a) Every permutation of S, can be written as a product of at most n — 1
transpositions.

(b) Every permutation of S, that is not a cycle can be written as a product of
at most n — 2 transpositions.

Proof (a) :

We know that if £ > 2, the cycle (aq, as, ...ax) can be written as (ay, ax) (a1, ag—1)...(a1, az)
which is k-1 transpositions.

Case-1, If k=1, then this cycle is the trivial cycle or the identity, which can be
written as 1-1=0 transpositions

Case-11, if £ > 1,

we know that every permutation o € S,, can be written as a product of disjoint
cycles, thus we can write

o = (11,12, .., A1k, ) (Q21, 29, ..y Qg ) - (A1 A2y +evy Q)

where ki + ko + ... + k,, = n and each of these cycle is disjoint.

we know that cycle i can be written as a product of k; — 1 transpositions, and
Yo (ki—1)=3" ki—> " 1 = n—m, this is maximized when m is minimized
and the least value of m is 1.

Thus, the largest value of n-m can be n-1.

Proof (b) :

From part (a), 0 = (a11, @12, .-, Q1p; ) (@21, 22, -, A2k ) - (A1 s A2y vy Aok, ) Where
> i, ki = n and each of cycles is disjoint and also from (a), we still know that
cycles i can be written as a product of k; — 1 transpositions and

Sk —1) =3 " ki — >, 1 = n— m, However, since o is not a cycle.
m > 2, thus n-m is maximized when m is minimized i.e m=2 i.e n-2 is the maxi-
mum value of n-m.

Hence every permutation of S,, that is not a cycle can be written as a product of
at most n-2 transpositions.

6. Que. No0.06 Let o be a permutation of a set A. We say that ¢ moves a € A if
o(a) # a. Let S4 denote the permutations on A.

(a) If A is a finite set then how many elements are moved by a n-cycle o € S47

(b) Let A be an infinite set and let H be the subset of S4 consisting of all o € Sy
such that o only moves finitely many elements of A. Show that H < 5.

(c) Let A be an infinite set and let K be the subset of S, consisting of all
o € S, such that o moves at most 50 elements of A. Is K < S47 Why?
Proof (a):

If A is finite, then ¢ moves only n elements because ¢ is n-cycle and the elements
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which is not in cycle are fixed.

Proof (b):

We may prove it by One-Step Subgroup Test.

As A is infinite set and o € S4 moves only finitely many elements of A. Since H
consists all o € Sy

= H is non-empty.

Now let, c € H = o' € H.

So, co07 ' =1 =c H

Now checking for closure property,

Let 01 and 0o € H be any two permutations such that o; and o, both moves
only finitely many elements of A.

Then o,005 also moves only finitely many elements of A.

= Closure property holds.

= H is subgroup of As.

Proof (c):

No, K will not be subgroup of S4

Because, suppose that o; moves at most 50 elements and o, moves at most 50
elements, then oy009 (Product of two permutations) might moves more than 50
elements.

= Closure property with respect to function composition is not satisfied in K.
= K is not a subgroup of S4.

7. Que. No.07 Show that if o is a cycle of odd length then o2 is a cycle.

Proof : Suppose o : A — Ais a cycle with odd length. Then we can write o
in a cycle notation as o

o = (ay,as, ..., Qqr+1) Where ay, ag, ..., a0p11 € A
On simple calculation, we may show that

o? = (ah a2, ---a2k+1)(a1, az, ---a2k+1)

2 _
0o~ = (ab as, as, ...a2k+1, a2, a4-'-a2k)
= 07 is cycle whenever o is cycle.

8. Que. No.08 Let p be a prime. Show that an element has order p in S,, if and
only if its cycle decomposition is a product of commuting p-cycles. Show by an
explicit example that this need not be the case if p is not prime.

Proof :

= Suppose the order of ¢ is p(p is prime).

Since order of ¢ is the lem of the sizes of the disjoint cycles in the cycle decom-
position of o, So all of these cycle must have sizes that divides p is either 1 or
p.

Since 1-cycles are omitted from the notation for the cycle decomposition of o.
Thus the cycle decomposition consists entirely of p-cycles. Thus o is the product
of disjoint commuting p-cycles.
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< Suppose o is the product of disjoint p-cycles. i.e 0 = ¢icac3...0,

then o? = (cicac3...¢,)* = A bb... =1

(since the p' power of p-cycles in o are all 1, so their product is 1)

ol =1

A p-cycle has order p, so no smaller power of ¢ can be 1. Hence |o| = p.

For an example :
Showing these conclusions may fail when p is not a prime.

Let p=6, 0 = (12)(345)
lo| =1lem(2,3) =6
but o is not the product of commuting 6-cycles.

9. Que. No.09 Show that if n > 4 then the number of permutations in S,, which
are the product of two disjoint 2-cycles is n(n — 1)(n — 2)(n — 3)/8.

Solution :
Given n> 4.
Since, Permutations which are the product of two disjoint 2-cycles is of the form
(ab)(cd), i.e of length 4.
Hence, there are n choices for a, (n-1) choices for b, (n-2) choices for ¢ and (n-3)
choices for d.
So there are n(n — 1)(n — 2)(n — 3) possible ways to write to write such a cycle.
Since disjoint cycles commutes there, so there are 8 different ways that differently
represent the same cycle(As i mentioned it in sol. of Que.2)
Hence total number of Permutation in S,, which are the product of two disjoint
(n)(n —1)(n —2)(n - 3)

8

2-cyles is

10. Que. No.10 Let b € S; and suppose b* = (2143567). Find b.
Solution :

tbe S7
b = 7
=0 =1
Sob=1b= (67).17 =b = (b4)2
= b= bt.p?
= b = (2143567)(2143567)

= (2457136).

As given that b* = (2143567).
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11. Que. No.11 Let b = (123)(145). Write b* in disjoint cycle form.

Solution :

Since b = (123)(145) = (14523). So order of b is 5.

(In case of single cycle. The order of permutation is the degree of permutation
is the lengths of the set.)

Now since |b] = 5, then b° = I.

So we can write 0% = (b°)19.6* = Ip* = p* = b1

Since b = (14523) = bt = b1 = (32541) = (132541)

so 0% = (13254) or (154)(132).

12. Que. No.12 Find three elements o in Sy with the property that o® = (157)(283)(469).

Solution :

Let 1:(11, 2:a2,3:a3,4:a4,5:a5,6:a6, 7:a7 aIldSICLg.
Now we have to find o such that 0% = (ayasar)(azagas)(asagag)
then oy = (aq .... as .... az ... )

o1 = (al as .. A5 Ag .. a7 Az .. )

o1 = (a1 ag a4 as ag ag ar as ag)

01=(124586739).

Similarly we can find other two elements

09 = (a1 P 0 S 0 1 SR )

09 — (a1 as .. as as .. a7 as .. )

o9 = (a1 ag ag as ay a4 a7 ag agp)

0o =(139524786).

and

03 = (CLQ .o ag ..o ag ... )

03 = (CLQ a1 a4 ag as g az ay ag)

03=(214856379).

13. Que. No.13 Show that if H is a subgroup of S,,, then either every member of
H is an even permutation or exactly half of the members are even.

Solution :
Let H C S, be any subgroup.
Now, we define H = {oc € H — o is even }

Claim: H is subgroup of H.

Let f,g € H, Since g are even, so ¢~ ' is also even.
since the product of even permutations are still even, so we have fog~! is even.
So, here there are only two possibilities either H = H or H ; H

Case-1, if H = H, then we are done.
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14.

15.

— — H
Case-11, if H # H, then we need to show that |H| = |—2|

Since H # H it implies that there exists at least one odd permutations o € H
— H —
Now consider f: H — i defined by f(h) = o.h for any h € H.

since o is odd and h is even
= o.h is odd.

H
H

To prove that H = @, We need to prove f is 1-1 and onto.
for 1-1

let hi, hy € H such that hy = h2.

since h; = ho

= ohy = chy = f(h1> = f(hz) = fis 1-1.

and for onto
— H
since f~': & — H is given by f~!(h) = o~ 'h/ for every I’ € =

So f is both 1-1 and onto
— H — H
= |H| = |=], hence |H| = 1H|
H 2

Que. No.14 Suppose that H is a subgroup of .S,, of odd order. Prove that H is
a subgroup of A,. rate S,.

Proof :

Let H be a subgroup of S,, of odd order.

i.e |[H| = odd order

We may prove it by contradiction.

To the contrary, suppose H ¢ A,,, then

suppose 3 ¢ € H such that ¢ is an odd permutation.

Let H = {Oél, Q9, O3, ...., Oép} U {\51, ﬂg, 53, 7ﬁ%}

-~

Odd Even

s.oH = {\O-Oflv 0Qg, 003, ..., O-O[jg} U {gﬁla 0627 0-/837 ey O-Bq}
Vv Vv

Even Odd

=H

= p=q

— |H| = 2p = 2q = even
Which is a contradiction.
— HCA,

Que. No.15 Prove that the smallest subgroup of S,, containing (12) and (12...n)
is S,,. In other words, these generate S,,.

Proof :
Let 0 = (12) and 7 = (123...n)

10
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16.

17.

Suppose H is subgroup of \S,, which contains both o = (12) and 7 = (123...n).
Now, we need to show that H = S,,.

Clearly, we have H C §,,. Since subgroups in particular are subsets.

Since we know that S, is generated by (n-1) transpositions (12)(23)(34)(45)...(n-
1 n).

Now, I want to show that (12) and (123...n) generates these (n-1) transposition.
Consider, To771

(12...n)(12)(12...n) 7! = (23)
(12..1)(23)(12..0) " = (34)
(12..n)(34)(12...n) " = (45)

Now i prove it by induction...

for n = 1, it is obviously true.

We assume that it is true for n = k, then
(12..k) (k=1 k)(12..k)"t =(k 1)

NOW7 we wish to show that it is true for n = k+1
(1,2, ..,k k+1)(k,k+1)(1,2, ...k, k+1)7!

- (1 ok ke D) (k+ LK) (k+1,k, ...\ 3,2,1)
= 6(1,2, ..k b+ 1)k + 1)(k,....3,2,1)
= (1, 2k, k+1)(k . 3,2,1)
(k)( ) (3)2)( )(1J<f+ 1)

= (k+1, 1)

So, it is true for n=k+1

= (12) and (123...n) generates S,
Which shows that S,, C H.

Thus h = S,

Que. No.16 Prove that for n > 3 the subgroup generated by the 3-cycles is A,,.
Proof :

Since every 3-cycle is an even permutation, then every 3-cycle of S,, is in A,,.
Now, Let 7 € A, = 7 is an even permutation.

= 7 is a product of an even no. of transposition.

However, (ajaz)(asay) = (ajaza3)(azazay)

And (a1a2)(aras) = (arazaz)

Consequently, every product of two transposition(whether they share an element
or not) can be written as a product of 3-cycles.

Hence, 7 can be written as a product of 3-cycles.

= For any n> 3, the subgroup generated by 3-cycle is A,,.

Que. No.17 Prove that if a normal subgroup of A,, contains even a single 3-cycle

11
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18.

it must be all of A,,.

Proof :

Let N C A, be Normal subgroup and suppose that (abc) € N. Let o’ € A, be
an arbitrary 3-cycles.

Then o' = 7(abc)T™! for some 7 € S,.

Now here, there are two possibility either 7 € A, or 7 ¢ A,,.

Case -1, If 7 € A,, then ¢’ € N and we are done.

Case -1I, If 7 ¢ A, then 7/ = 7(ab) is in A, and 7/ = 7(acb)7’~! is once again in
N.

= If N < A,, and contains a 3-cycle. Then N=A,,.

Que. No.18 Prove that A5 has no non-trivial proper normal subgroups. In
other words show that As is a simple group.

Solution : .

Order of A5 = |A5| = 5 =60 = 22.3.5.

Let N be proper normal subgroup of As, then

IN|=2,3,4,5,6,10,12,15,20, 30.

5P5
Total no. of 5 order elements in A = — = 24,

5P3
Total no. of elements of 3 order in A5 = — = 20,

And total no. of 15-order elements in A5 = 0.
Let us assume that |[H| =3 ,6, 12,15

As
th — | =20,10,5 .4
Il =20.10.5.
d(3,122|) =1
o wea(3.521)
= H would contain all 20 elements of order 3.

Which is a contradiction.
{ As, Theorem says that If H be Normal subgroup of a finite group G. And if

G
ged (|x|, |E|):17 then z € G}.
Similarly, suppose that |[H| =5 ,10 , 20
Asp
then |—| =12,6, 3
en | T | , 6,

= H would contain all 24 elements of order 5.
which is a contradiction.

A
Let |H| = 30, then \ﬁﬂ = 2.

A A
So again gcd(3,|ﬁ5|> = 1 and ng<5 ) |E5|) =1

—> H would contain all 20+24 = 44 elements.
we get again a contradiction.

12
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19.

20.

And finally, let us assume that, |H|= 2 or 4.
A
— ‘FE)' = 30, 15
Since, we know that any group of order 30 or 15 has an element of order 15.
o1 As
or As, if |ﬁ| = 15 = 3 x5 = p x ¢ where p=3 and q=5.
( Theorem : If G is a group of order pq, where p and q are primes, p < ¢ and
p 1 q, then G is cyclic.)

= G has at least one element of order 15.
Which is again contradiction,

Asp
because As contains no such element, neither does I

This proves that As is simple.

Que. No.19 Show that Z(S,,) is trivial for n > 3.

Solution :

Let ¢ € S, be a non-identity element then there exists two distinct a,b €
{1,2,3,...,n} with o(a) = 0.

Since n > 3, Now choosing k € {1,2,3,....,n} such that k # a and k # b.

Let 7 = (ak). Then

7(o(a)) =7(b) =k and o(7(a)) = o(a) = b

since k#b = 7(0(a)) # o(7(a)).

Hence for every non-identity permutation in 5, there exists some element not
commuting with it.

Therefore Z(S,,) must be trivial.

Que. No. 20 Show that two permutations in S,, are conjugate if and only if
they have the same cycle structure or decomposition. Given the permutation
= (12)(34), y = (56)(13), find a permutation a such that a *za = y.

Proof :

For any ¢ and any d < n, we have

o(12..d)o™ = (o(1)o(2)....0(d))

This shows that any conjugate of d-cycle is again d-cycle.

Since every permutation is a product of disjoint cycles, it follows that the cycle
structure of conjugate permutations are the same.

In other direction,

Let 7 = (a1aq.....a,) (a4 1Gr19.....a5) ... (qy.....a,,) and
7= (a)dy.....ar ) (Qr i1 0eety) e (o)

be two permutations having the same cycle structure.
Define 0 € S,, by o(a;) = a’ for i = 1,2,...,m then
oro™t = o(a1as....a, )0 o (Ari1Apya...as)o T
= (a}dy.....a;) (A 1Gr49.....0). (.o )
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= 7—,
This shows that 7 and 7/ are conjugate.

Now, Given the permutation z = (12)(34), y = (56)(13)
Since that a 'za = y.
ST =ay = r = aya

= ((12)(34)) = a((56)(13))a""
= ((12)(34))(5)(6) = a((56)(13)(2)(4))a"
= (a(5)a(6))(a(1)a(3))a(2)a(4
=1=a(5),2=a(6),3=a(l),4=a(3) and 5 = a(2),6 = a(4)
1 2 3 4 5 6
TIT 35 4.6 1 2

= q = (134625)

Checking for a, a = (134625) and a~! = (526431) = (152643)
o~ 'wa = (134625)((12)(34))(152643)

= (13)(2)(4)(56) = (13)(56) = RHS, Hence done.
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