MATHEMATICAL SCIENCES PAPER-I (PART-B)

- 41. Let $\{x_n\}$ be a sequence of non-zero real numbers. Then
 - 1. If $x_n \rightarrow a$, then $a = \sup x_n$.
 - 2. If $\frac{x_{n+1}}{x_n} < 1 \quad \forall n$, then $x_n \to 0$.
 - 3. If $x_n < n \forall n$, then $\{x_n\}$ diverges.
 - 4. If $n \le x_n \forall n$, then $\{x_n\}$ diverges.
- 42. Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers such that $x_n \le y_n \le x_{n+2}$, n = 1, 2, 3, L
 - 1. $\{y_n\}$ is an bounded sequence.
 - 2. $\{x_n\}$ is an increasing sequence.
 - 3. $\{x_n\}$ and $\{y_n\}$ converge together.
 - 4. $\{y_n\}$ is an increasing sequence.
- 43. Let $f:[0, 1] \rightarrow (0, \infty)$ be a continuous function. Suppose f(0) = 1 and f(1) = 7. Then 1. f is uniformly continuous and is not onto.
 - 2. f is increasing and f([0, 1]) = [1, 7].
 - 3. f is not uniformly continuous.
 - 4. f is not bounded.
- 44. Let $f: [a, b] \rightarrow [c, d]$ be a monotone and bijective function. then
 - 1. f is continuous, but f^{-1} need not be.
 - 2. f and f^{-1} are both continuous.
 - 3. If b a > d c, then f is a decreasing function.
 - 4. f is not uniformly continuous.
- 45. Let $\sum_{n=1}^{\infty} x_n$ be a series of real numbers. Which of the following is true?
 - 1. If $\sum_{n=1}^{\infty} x_n$ is divergent, then $\{x_n\}$ does not converge to 0.
 - 2. If $\sum_{1}^{\infty} x_n$ is convergent, then $\sum_{1}^{\infty} x_n$ is absolutely convergent.
 - 3. If $\sum_{1}^{\infty} x_n$ is convergent, then $x_n^2 \to 0$, as $n \to \infty$.
 - 4. If $x_n \to 0$, then $\sum_{1}^{\infty} x_n$ is convergent.

- 46. Let f: $i \rightarrow i$ be differentiable with $0 \le f'(x) \le 1$ for all x. Then
 - 1. f is increasing and f is bounded.
 - 2. f is increasing and f is Riemann integrable on i .
 - 3. f is increasing and f is uniformly continuous.
 - 4. f is of bounded variation.
- 47. Let $f_n:[0,1] \rightarrow i$ be a sequence of differentiable functions. Assume that (f_n) converges uniformly on [0, 1] to a function f. Then
 - 1. f is differentiable and Riemann integrable on [0, 1].
 - 2. f is uniformly continuous and Riemann integrable on [0, 1].
 - 3. f is continuous, f need not be differentiable on (0, 1) and need not be Riemann integrable on [0, 1].
 - 4. f need not be uniformly continuous on [0, 1].

48. Let, if possible,
$$\alpha = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
, $\beta = \lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$. Then

- 1. α exists but β does not.
- 2. α does not exists but β exists.
- 3. α , β do not exist.
- 4. Both α , β exist.

49. Let $f: \rightarrow i$ be a non-negative Lebesgue integrable function. Then

- 1. f is finite almost everywhere.
- 2. f is a continuous function.
- 3. f has at most countably many discontinuities.
- 4. f^2 is Lebesgue integrable.
- 50. Let $S = \{(x, y) \in j^2 : xy = 1\}$. then
 - 1. S is not connected but compact.
 - 2. S is neither connected nor compact.
 - 3. S is bounded but not connected.
 - 4. S is unbounded but connected.
- 51. Consider the linear space

X = C[0, 1] with the norm
$$||f|| = \sup\{|f(t)|: 0 \le t \le 1\}$$
.
Let F = $\{f \in X : f(\frac{1}{2})=0\}$ and G = $\{g \in X : g(\frac{1}{2}) \ne 0\}$.

Then

- 1. F is not closed and G is open.
- 2. F is closed but G is not open.
- 3. F is not closed and G is not open.
- 4. F is closed and G is open.

- 52. Let V be the vector space of all n x n real matrices, $A = [a_{ij}]$ such that $a_{ij} = -a_{ji}$ for all i, j. Then the dimension of V is:
 - 1. $\frac{n^2 + n}{2}$. 2. $\frac{n^2 - n}{2}$. 3. $n^2 - n$. 4. n.
- 53. Let n=mk where m and k are integers ≥ 2 . Let A = $[a_{ij}]$ be a matrix given by $a_{ij}=1$ if for some r = 0, 1,..., m-1, rk < i, $j \leq (r+1)k$ and $a_{ij}=0$, otherwise. Then the null space of A has dimension :
 - 1. m(k-1).
 - 2. mk 1.
 - 3. k(m-1).
 - 4. zero.
- 54. The set of all solutions to the system of equations :
 - $(1-i) x_1 ix_2 = 0$ $2x_1 + (1-i)x_2 = 0$

is given by:

1.
$$(x_1, x_2) = (0, 0).$$

2. $(x_1, x_2) = (1, 1).$
3. $(x_1, x_2) = c \left(1, \cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4} \right)$ where c is any complex number.
4. $(x_1, x_2) = c \left(\cos \frac{3\pi}{4}, i \sin \frac{3\pi}{4} \right)$ where c is any complex number.

- 55. Let A be an m x n matrix where m < n. Consider the system of linear equations A $\underline{x} = \underline{b}$ where \underline{b} is an n x 1 column vector and $\underline{b} \neq \underline{0}$. Which of the following is always true?
 - 1. The system of equations has no solution.
 - 2. The system of equations has a solution if and only if it has infinitely many solutions.
 - 3. The system of equations has a unique solution.
 - 4. The system of equations has at least one solution.

- 56. Let T be a normal operator on a complex inner product space. Then T is self-adjoint if and only if :
 - 1. All eigenvalues of T are distinct.
 - 2. All eigenvalues of T are real.
 - 3. T has repeated eigenvalues.
 - 4. T has at least one real eigenvalue.
- 57. A 2 x 2 real matrix A is diagonalizable if and only if :
 - 1. $(trA)^2 < 4$ Det A.
 - 2. $(tr A)^2 > 4 Det A.$
 - 3. $(tr A)^2 = 4 \text{ Det } A.$
 - 4. Tr A = Det A.
- 58. Let A be a 3 x 3 complex matrix such that $A^3 = I$ (= the 3 x 3 identity matrix). Then :
 - 1. A is diagnonalizable.
 - 2. A is not diagonalizable.
 - 3. The minimal polynomial of A has a repeated root.
 - 4. All eigenvalues of A are real.
- 59. Let V be the real vector space of real polynomials of degree < 3 and let $T : V \rightarrow V$ be the linear transformation defined by P(t) a Q(t) where Q(t) = P(at + b). Then the matrix of T with respect to the basis 1, t, t² of V is:

1.
$$\begin{pmatrix} b & b & b^2 \\ 0 & a & 2ab \\ 0 & 0 & a^2 \end{pmatrix}$$
.
2. $\begin{pmatrix} a & a & a^2 \\ 0 & b & 2ab \\ 0 & 0 & b^2 \end{pmatrix}$.
3. $\begin{pmatrix} b & b & b^2 \\ a & a & 0 \\ 0 & b & a^2 \end{pmatrix}$.
4. $\begin{pmatrix} a & a & a^2 \\ b & b & 0 \\ 0 & a & b^2 \end{pmatrix}$.

The minimal polynomial of the 3 × 3 real matrix $\begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & h \end{pmatrix}$ is: 60.

- (X a)(X b).1.
- 2. $(X-a)^2 (X-b)$. 3. $(X-a)^2 (X-b)^2$. 4. $(X-a) (X-b)^2$.

The characteristic polynomial of the 3 × 3 real matrix A = $\begin{pmatrix} 0 & 0 & -c \\ 1 & 0 & -b \\ 0 & 1 & -a \end{pmatrix}$ is: 61.

- $X^{3} + aX^{2} + bX + c$. 1.
- 2. (X-a)(X-b)(X-c). 3. $(X-1)(X-abc)^2$.
- $(X-1)^{2}(X-abc)$ 4
- Let e_1 , e_2 , e_3 denote the standard basis of i^{3} . Then $ae_1 + be_2 + ce_3$, e_2 , e_3 is an 62. orthonormal basis of i^{3} if and only if
 - $a \neq 0$, $a^2 + b^2 + c^2 = 1$. 1.
 - $a = \pm 1$, b = c = 0. 2.
 - 3. a = b = c = 1. 4. a = b = c.

Let $E = \{z \in \pounds : e^z = i\}$. Then E is : 63.

- a singleton. 1.
- 2. E is a set of 4 elements.
- 3. E is an infinite set.
- E is an infinite group under addition. 4

Suppose $\{a_n\}$ is a sequence of complex numbers such that $\sum_{n=1}^{\infty} a_n$ diverges. Then 64.

the radius of convergence R of the power series $\sum_{n=1}^{\infty} \frac{a_n}{2^n} (z-1)^n$ satisfies :

- 1. R = 3.
- 2. R <u>≤</u> 2.
- R > 2. 3.
- 4. $R = \infty$.

Let f, g be two entire functions. Suppose $|f^2(z) + g^2(z)| = 1$, then 65.

- 1. f(z)f'(z) + g(z)g'(z) = 0.
- 2. f and g must be constant.
- 3. f and g are both bounded functions.
- 4. f and g have no zeros on the unit circle.

 $\int_{|z|=2\pi} \frac{\sin z}{(z-\pi)^2}$ where the curve is taken anti-clockwise, equals : The integral 66.

- 1. -2πi.
- 2. 2πi.
- 3. 0.
- 3. 4πi.

Suppose $\{z_n\}$ is a sequence of complex numbers and $\sum_{n=1}^{\infty} z_n$ converges. 67.

Let $f: \pounds \to \pounds$ be an entire function with $f(z_n) = n, \forall n = 0, 1, 2, ...$ Then

- 1. $f \equiv 0$.
- 2 f is unbounded.
- 3. no such function exists.
- 4. f has no zeros.

Let $f(z) = \cos z$ and $g(z) = \cos z^2$, for $z \in \pounds$. Then 68.

- 1. f and g are both bounded on \pounds .
- 2. f is bounded, but g is not bounded on f.
- 3. g is bounded, but f is not bounded on \pounds .
- 4. f and g are both bounded on the x-axis.
- Let f be an analytic function and let $f(z) = \sum_{n=0}^{\infty} a_n (z-2)^{2n}$ be its Taylor series in 69. some disc. Then
 - $f^{(n)}(0) = (2n)!a_n$ 1.
 - 2.
 - $f^{(n)}(2) = n!a_n$ $f^{(2n)}(2) = (2n)!a_n$ $f^{(2n)}(2) = n!a_n$ 3.
 - 4

70. The signature of the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & L & n \\ n & n-1 & n-2 & 1 \end{pmatrix} \text{ is}$$

1. $(-1)^{\binom{n}{2}}$.
2. $(-1)^n$.
3. $(-1)^{n+1}$.
4. $(-1)^{n-1}$.

- 71. Let α be a permutation written as a product of disjoint cycles, k of which are cycles of odd size and m of which are cycles of even size, where $4 \le k \le 6$ and $6 \le m \le 8$. It is also known that α is an odd permutation. Then which one of the following is true?
 - 1. k = 4 and m = 6.
 - 2. m = 7.
 - 3. k = 6.
 - 4. m = 8.

72. Let p, q be two distinct prime numbers. then $p^{q-1} + q^{p-1}$ is congruent to

- 1. 1 mod pq.
- 2. 2 mod pq.
- 3. p–1 mod pq.
- 4. q–1 mod pq.
- 73. What is the total number of groups (upto isomorphism) of order 8?

(https://pkalika.in/category/download/question-paper/)

- 1. only one.
- 2. 3.
- 3. 5.
- 4. 6.

74. Which ones of the following three statements are correct?

- (A) Every group of order 15 is cyclic.
- (B) Every group of order 21 is cyclic.
- (C) Every group of order 35 is cyclic.
- 1. (A) and (C).
- 2. (B) and (C).
- 3. (A) and (B).
- 4. (B) only.

75. Let p be a prime number and consider the natural action of the group $GL_2(\phi_p)$ on $\phi_{p} \times \phi_{p}$. Then the index of the isotropy subgroup at (1, 1) is

- $p^2 1$. 1.
- 2. p (p−1).
- $\begin{array}{ccc}
 2. & p \\
 3. & p \\
 4. & p^2
 \end{array}$
- The quadratic polynomial $X^2 + bX + c$ is irreducible over the finite field 76. ϕ_5 if and only if
 - $b^2 4c = 1$. 1.
 - 2 $b^2 - 4c = 4$
 - either $b^2 4c = 2$ or $b^2 4c = 3$. either $b^2 4c = 1$ or $b^2 4c = 4$. 3.
 - 4
- Let K denote a proper subfield of the field $F = GF(2^{12})$ a finite field with 2^{12} 77. elements. Then the number of elements of K must be equal to
 - $\sum_{\substack{m \\ 2^{m} \\ 2^{12}}} m = 1, 2, 3, 4 \text{ or}$ where m = 1, 2, L, 11. 2^{m} where m = 1, 2, 3, 4 or 6. 1.
 - 2.
 - 3.
 - 2^{m} where m and 12 are coprime to each other. 4

78. The general and singular solutions of the differential equation

$$y = \frac{9}{2}x p^{-1} + \frac{1}{2}px$$
, where $p = \frac{dy}{dx}$, are given by

1.
$$2cy - x - 9c - 0, 3y - 2x.$$

2. $2cy - x^2 + 9c^2 - 0, y = +3x$

2.
$$2cy - x + 9c = 0$$
, $y = \pm 3x$.

- $2cy + x^{2} + 9c^{2} = 0, \quad y = \pm 3x.$ $2cy + x^{2} + 9c^{2} = 0, \quad 3y = 4x.$ 3. 4.
- A homogenous linear differential equation with real constant coefficients, which has $y = xe^{-3x} \cos 2x + e^{-3x} \sin 2x$, as one of its solutions, is given by: 79.

1.
$$(D^2 + 6D + 13)y = 0$$
.

2.
$$(D^2 - 6D + 13)y = 0.$$

3.
$$(D^2 - 6D + 13)^2 y = 0.$$

4. $(D^2 + 6D + 13)^2 v = 0.$

80. The particular integral $y_p(x)$ of the differential equation

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = \frac{1}{x+1}, \ x > 0$$

is given by

$$y_p(x) = xv_1(x) + \frac{1}{x}v_2(x)$$

where $v_1(x)$ and $v_2(x)$ are given by

1.
$$xv_1'(x) - \frac{1}{x^2}v_2'(x) = 0, \quad v_1'(x) - \frac{1}{x^2}v_2'(x) = \frac{1}{x+1}.$$

2.
$$xv_1'(x) + \frac{1}{x^2}v_2'(x) = 0, \quad v_1'(x) - \frac{1}{x^2}v_2'(x) = \frac{1}{x+1}.$$

3.
$$xv_1'(x) - \frac{1}{x^2}v_2'(x) = 0, \quad v_1'(x) + \frac{1}{x^2}v_2'(x) = \frac{1}{x+1}.$$

4.
$$xv_1'(x) + \frac{1}{x^2}v_2'(x) = 0, \quad v_1'(x) + \frac{1}{x^2}v_2'(x) = \frac{1}{x+1}.$$

81. The boundary value problem $y'' + \lambda y = 0, y(0) = 0, y(\pi) + k y'(\pi) = 0$, is self-adjoint

- 1. only for $k \in \{0, 1\}$.
- 2. for all $k \in (-\infty, \infty)$.
- 3. only for $k \in [0, 1]$.
- 4. only for $k \in (-\infty, 1)$ U(1, ∞).

82. The general integral of
$$z(xp - yq) = y^2 - x^2$$
 is

1.
$$z^2 = x^2 + y^2 + f(xy)$$
.
2. $z^2 = x^2 - y^2 + f(xy)$.
3. $z^2 = -x^2 - y^2 + f(xy)$.
4. $z^2 = y^2 - x^2 + f(xy)$.

83. A singular solution of the partial differential equation $z + xp - x^2y q^2 - x^3pq = 0$ is

1. $z = \frac{x^2}{y}.$ 2. $z = \frac{x}{y^2}.$ 3. $z = \frac{y}{x^2}.$ 4. $z = \frac{y^2}{x}.$

84. The characteristics of the partial differential equation $36 \frac{\partial^2 z}{\partial x^2} - y^{14} \frac{\partial^2 z}{\partial y^2} - 7 y^{13} \frac{\partial z}{\partial y} = 0, \text{ are given by}$

1. $x + \frac{1}{y^6} = c_1, x - \frac{1}{y^6} = c_2.$

2.
$$x + \frac{36}{y^6} = c_1, x - \frac{36}{y^6} = c_2.$$

3.
$$6x + \frac{7}{y^6} = c_1, \ 6x - \frac{7}{y^6} = c_2.$$

4.
$$6x + \frac{7}{y^8} = c_1, \ 6x - \frac{7}{y^8} = c_2.$$

85. The Lagrange interpolation polynomial through (1, 10), (2, -2), (3, 8), is

1.
$$11x^2 - 45x + 38$$

- 2. $11x^2 45x + 36$.
- 3. $11x^2 45x + 30$.
- 4. $11x^2 45x + 44$.

86. Newton's method for finding the positive square root of a > 0 gives, assuming $x_0 > 0, x_0 \neq \sqrt{a}$,

1. $x_{n+1} = \frac{x_n}{2} + \frac{a}{x_n}$. 2. $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$. 3. $x_{n+1} = \frac{1}{\sqrt{2}} \left(x_n - \frac{a}{x_n} \right)$. 4. $x_{n+1} = \frac{1}{\sqrt{2}} \left(x_n + \frac{a}{x_n} \right)$.

87. The extremal problem

$$J[y(x)] = \int_{0}^{\pi} \left\{ (y')^{2} - y^{2} \right\} dx$$

y(0)=1, y(\pi) = \lambda, has

- 1. a unique extremal if $\lambda = 1$.
- 2. infinitely many extremals if $\lambda = 1$.
- 3. a unique extremal if $\lambda = -1$.
- 4. infinitely many extremal if $\lambda = -1$.
- 88. The functional

$$J[y] = \int_{0}^{1} e^{x} (y^{2} + \frac{1}{2} y'^{2}) dx ; y(0) = 1, y(1) = e$$

attains

89.

- 1. A weak, but not a strong minimum on e^x .
- 2. A strong minimum on e^x .
- 3. A weak, but not a strong maximum on e^x .
- 4. A strong maximum on e^x .

A solution of the integral equation

$$\int_{0} e^{x-t} \phi(t) dt = \sinh x, \text{ is}$$

1.
$$\phi(x) = e^{-x}.$$

- 2. $\phi(x) = e^x$.
- 3. $\phi(x) = \sinh x$.
- 4. $\phi(x) = \cosh x$.

90. If $\overline{\varphi}(p)$ denotes the Laplace transform of $\varphi(x)$ then for the integral equation of convolution type

$$\varphi(x) = 1 + 2 \int_{0}^{x} \cos(x-t) \varphi(t) dt,$$

$$\overline{\varphi}(p) \text{ is given by}$$

1.
$$\frac{p^2 + 1}{(p-1)^2}$$
.
2. $\frac{p^2 + 1}{(p+1)^2}$.
3. $\frac{(p^2 + 1)}{p(p-1)^2}$.
4. $\frac{p^2 + 1}{p(p+1)^2}$.

- 91. The Lagrangian of a dynamical system is $L = q_1^2 + q_2^2 + k_1 q_1^2$, then the Hamiltonian is given by
 - 1. $H = p_1^2 + p_2^2 kq_1^2$.
 - 2. $H = \frac{1}{4} \left(p_1^2 + p_2^2 \right) + k q_1^2.$

3.
$$H = p_1^2 + p_2^2 + kq_1^2$$
.

4.
$$H = \frac{1}{4} \left(p_1^2 + p_2^2 \right) - k q_1^2$$

92. The kinetic energy T and potential energy V of a dynamical system are given respectively, under usual notations, by

$$T = \frac{1}{2} \left[A(\theta^2 + \psi^2 \sin^2 \theta) + B(\psi^2 \cos \theta + \phi^2)^2 \right]$$

and V = Mgl $\cos\theta$. The generalized momentum p_{ϕ} is

1.
$$p_{\phi} = 2B\phi \phi \cos \theta + 2\phi^{2}$$
.

2.
$$p_{\phi} = \frac{B}{2} \left(\psi \cos \theta + \phi \right)^2$$
.

3.
$$p_{\phi} = B \left(\psi \otimes \cos \theta + \phi \right)^2$$
.

4.
$$p_{\phi} = B(\psi \otimes \cos \theta + \phi)$$
.

93. Consider repeated tosses of a coin with probability p for head in any toss. Let NB(k,p) be the random variable denoting the number of tails before the kth head. Then $P(NB(10,p) = j 3^{rd}$ head occurred in 15th toss) is equal to

[13]

- 1. P(NB(7, p) = j 15), for j = 15, 16, L
- 2. P(NB(7, p) = j 12), for j = 12, 13, L
- 3. P(NB(10, p) = j 15), for j = 15, 16, L
- 4. P(NB (10, p) = j 12), for j = 12, 13, L
- 94. Suppose X and Y are standard normal random variables. Then which of the following statements is correct?
 - 1. (X, Y) has a bivariate normal distribution.
 - 2. Cov(X, Y) = 0.
 - 3. The given information does not determine the joint distribution of X and Y.
 - 4. X + Y is normal.
- 95. Let F be the distribution function of a strictly positive random variable with finite expectation μ . Define

$$G(\mathbf{x}) = \begin{cases} \frac{1}{\mu} \int_{0}^{x} (1 - F(y)) \, dy, & \text{if } x > 0\\ 0, & \text{otherwise} \end{cases}$$

Which of the following statements is correct?

- 1. G is a decreasing function.
- 2. G is a probability density function.
- 3. $G(x) \rightarrow +\infty \text{ as } x \rightarrow +\infty$.
- 4. G is a distribution function.
- 96. Let X_1, X_2L be an irreducible Markov chain on the state space $\{1, 2, L\}$. Then $P(X_n = 5 \text{ for infinitely many } n)$ can equal
 - 1. Only 0 or 1.
 - 2. Only 0.
 - 3. Any number in [0, 1].
 - 4. Only 1.

97. X_1, X_2, L , X_n is a random sample from a normal population with mean zero and variance σ^2 . Let $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Then the distribution of $T = \sum_{i=1}^{n-1} (X_i - \overline{X})$ is

1.
$$t_{n-1}$$

2. $N(0, (n-1) \sigma^2)$
3. $N(0, \frac{n+1}{n}\sigma^2)$
4. $N(0, \frac{n-1}{n}\sigma^2)$

98. Let X_1, X_2, L, X_n be independent exponential random variables with parameters λ_1, L, λ_n respectively. Let $Y = \min(X_1, L, X_n)$. Then Y has an exponential distribution with parameter

1.
$$\sum_{i=1}^{n} \lambda_i$$

2.
$$\prod_{i=1}^{n} \lambda_i$$

3. $\min\{\lambda_1, K, \lambda_n\}$

4. $\max\{\lambda_1, K, \lambda_n\}$

99. Suppose x_1, x_2L , x_n are n observations on a variable X. Then the value of A which minimizes $\sum_{i=1}^{n} (x_i - A)^2$ is

- 1. median of x_1, x_2L, x_n
- 2. mode of x_1, x_2L, x_n
- 3. mean of x_1, x_2L, x_n

4.
$$\frac{\min(x_1, \lfloor x_n \rfloor) + \max(x_1, \lfloor x_n \rfloor)}{2}$$

100. Suppose X₁, X₂, L , X_n are i.i.d. with density function $f(x) = \frac{\theta}{x^2}$, $\theta < x$, $\theta > 0$.

- Then
- 1. $\sum_{i=1}^{n} \frac{1}{X_i^2}$ is sufficient for θ
- 2. $\min_{1 \le i \le n} X_i$ is sufficient for θ .
- 3. $\prod_{i=1}^{n} \frac{1}{X_{i}^{2}}$ is sufficient for θ
- 4. $\left(\max_{1 \le i \le n} X_i, \min_{1 \le i \le n} X_i\right)$ is not sufficient for θ .

- 101. Suppose X is a random variable with density function f(x). To test H_0 : f(x) = 1, 0 < x < 1, vs H_1 : f(x) = 2x, 0 < x < 1, the UMP test at level $\alpha = 0.05$
 - 1. Does not exist
 - 2. Rejects H_0 if X > 0.95
 - 3. Rejects H_0 if X > 0.05
 - 4. Rejects H_0 for $X < C_1$ or $X > C_2$ where C_1 , C_2 have to be determined.
- 102. Suppose the distribution of X is known to be one of the following:

$$f_1(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -\infty < x < \infty;$$

$$f_2(x) = \frac{1}{2} e^{-|x|}, -\infty < x < \infty;$$

$$f_3(x) = \frac{1}{4}, -2 < x < 2.$$

If X = 0 is observed, then the maximum likelihood estimate of the distribution of X is

- 1. $f_1(x)$
- 2. $f_2(x)$
- 3. $f_3(x)$
- 4. Does not exist.
- 103. Suppose X_i, i = 1, 2, L, n, are independently and identically distributed random variables with common distribution function F(·). Suppose F(·) is absolutely continuous and the hypothesis to be tested is pth (0 \xi_0. An appropriate test is
 - 1. Sign Test
 - 2. Mann-Whitney Wilcoxon rank sum test
 - 3. Wilcoxon Signed rank test
 - 4. Kolmogorov Smirnov test

[15]

104. Suppose $Y \sim N(\theta, \sigma^2)$ and suppose the prior distribution on θ is $N(\mu, \tau^2)$. The posterior distribution of θ is also $N\left(\frac{\tau^2}{\tau^2 + \sigma^2}y + \frac{\sigma^2}{\tau^2 + \sigma^2}\mu, \frac{\sigma^2\tau^2}{\tau^2 + \sigma^2}\right)$

The Bayes' estimator of θ under squared error loss is given by

1.
$$\frac{\tau^{2}}{\tau^{2} + \sigma^{2}} y$$

2.
$$\frac{\tau^{2} y}{\tau^{2} + \sigma^{2}}$$

3.
$$\frac{\tau^{2}}{\tau^{2} + \sigma^{2}} y + \frac{\sigma^{2}}{\tau^{2} + \sigma^{2}} \mu$$

4. y.

105. Consider the model

$$y_{ij} = \mu + \theta(i-1) + \beta (2-j) + \epsilon_{ij}, i = 1, 2; j = 1, 2,$$

where y_{ij} is the observation under i^{th} treatment and j^{th} block, μ is the general effect, θ and β are treatment and block parameters respectively and ε_{ij} are random errors with mean 0 and common variance σ^2 . Then

- 1. μ , θ and β are all estimable
- 2. θ and β are estimable, μ is not estimable
- 3. μ and θ are estimable, β is not estimable
- 4. μ and β are estimable, θ is not estimable
- 106. Consider a multiple linear regression model $\underline{y} = X \ \underline{\beta} + \underline{\varepsilon}$ where \underline{y} is a n × 1 vector of response variables, X is a n × p regression matrix, $\underline{\beta}$ is a p × 1 vector of unknown parameters and $\underline{\varepsilon}$ is a n × 1 vector of uncorrelated random variables with mean 0 and common variance σ^2 . Let $\underline{\hat{y}}$ be the vector of least squares fitted values of \underline{y} and $\underline{e} = (e_1 L \ e_n)^T$ be the vector of residuals. Then
 - 1. $\sum_{i=1}^{n} e_{i} = 0 \text{ always}$ 2. $\sum_{i=1}^{n} e_{i} = 0 \text{ if one column of X is } (1, L, 1)^{T}$
 - 3. $\sum_{i=1}^{n} e_i = 0 \text{ only if one column of X is } (1 \text{ L}, 1)^{\text{T}}$

4. nothing can be said about
$$\sum_{i=1}^{n} e_i$$

107. Suppose $X_{0,p\times 1} \sim N_p(0, \Sigma)$ where

$$\Sigma = \begin{pmatrix} 1 & -1/2 & 0 & L & 0 \\ -1/2 & 1 & 0 & L & 0 \\ 0 & 0 & & & \\ M & M & \Sigma_{22} & \\ 0 & 0 & & & \end{pmatrix}$$

and Σ_{22} is positive definite. Then

P
$$(X_1 - X_2 < 0, X_1 + X_2 \neq 0 | X_P > 0)$$
 is equal to

1.1/82.1/43.1/24.1Suppose the variance-covariance matrix of a random vector $\underline{X}_{(3\times 1)}$ is

108.

$$\sum = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 8 & 2 \\ 0 & 2 & 8 \end{pmatrix}.$$

The percentage of variation explained by the first principal component is

- 1. 50
- 2. 45
- 3. 60
- 4. 40
- 109. A population consists of 10 students. The marks obtained by one student is 10 less than the average of the marks obtained by the remaining 9 students. Then the variance of the population of marks (σ^2) will always satisfy
 - 1. $\sigma^2 \ge 10$ 2. $\sigma^2 = 10$
 - $\begin{array}{l} 2. \qquad \sigma^2 \leq 10 \\ 3. \qquad \sigma^2 \leq 10 \end{array}$
 - $5. \quad O \leq \mathbb{N}$
 - 4. $\sigma^2 \ge 9$

110. For what value of λ , the following will be the incidence matrix of a BIBD?

- $N = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & \lambda \\ 0 & 1 & 1 \end{pmatrix}$ 1. $\lambda = 0$ 2. $\lambda = 1$ 3. $\lambda = 4$ 4. $\lambda = 3$
- 111. With reference to a 2^2 factorial experiment, consider the factorial effects A, B and AB. Then the estimates of
 - 1. Only A and B are orthogonal
 - 2. Only A and C are orthogonal
 - 3. Only B and C are orthogonal
 - 4. A, B and C are orthogonal
- 112. Let X be a r.v. denoting failure time of a component. Failure rate of the component is constant if and only if p.d.f. of X is
 - 1. exponential
 - 2. negative binomial
 - 3. weibull
 - 4. normal
- 113. Consider the problem

 $\begin{array}{ll} \max & 6 \; x_1 - 2 x_2 \\ \text{subject to} & x_1 - x_2 \leq 1 \\ & 3 x_1 - x_2 \leq 6 \\ & x_1, x_2 \geq 0 \end{array}$

This problem has

- 1. unbounded solution space but unique optimal solution with finite optimum objective value
- 2. unbounded solution space as well as unbounded objective value
- 3. no feasible solution
- 4. unbounded solution space but infinite optimal solutions with finite optimum objective value

- 114. Consider an M/M/1/K queuing system in which at most K customers are allowed in the system with parameters λ and μ , respectively ($\rho = \lambda / \mu$). The expected steady state number of customers in the queueing system is K/2 for
 - 1. $\rho = 1$
 - 2. *ρ*<1
 - 3. *ρ*>1
 - 4. any ρ

115. Consider the system of equations $P_1x_1 + P_2x_2 + P_3x_3 + P_4x_4 = b$, where

$$P_{1} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, P_{2} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, P_{3} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}, P_{4} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}.$$

The following vector combination <u>does not</u> form a basis: