CUCET Mathematics MSc Questions Paper

It Contains

- CUCET-2019 Question Paper
- CUCET-2018 Question Paper
- CUCET-2017 Question Paper
- CUCET-2016 Question Paper
- CUCET Sample Que. Paper

No. of Pages: 78

Download NET/GATE/JAM Study Materials and Solutions at https://pkalika.in/
https://pkalika.in/
https://www.facebook.com/groups/pkalika/

Test Paper Series Code

C

Question Booklet No. :

2276163

Test Date: 26 May 2019

PG-QP-27

Time: 09:00 AM To 11:00 AM

Entrance Test for the Course(s): M.A./M.Sc. (Mathematics) [CUJAM], [CUKAS], [CUMGB], [CUSBR], M.Sc. (Mathematics) [CUKER], [CUHAR], [CUPUN], [CUKNK], [CURAJ], [CUJHD], M.Sc. B.Ed. (Mathematics) [CURAJ].

Roll Number

2 1 8 8 1 3

Test Center Code

188

Name of the Candidate

NEHA KUMART.

Candidate's Signature: Neha Kumari

Invigilator's Signature: ..

Instructions to Candidates

- Do NOT open the Question Booklet until the Hall Superintendent gives the signal for the commencement of the examination.
- 2. Write your Name, Roll Number and Test Center Code (as given in the Admit Card) and sign in the space provided above.
- After the commencement of the examination, open the Question Booklet. If the Question Booklet or the OMR Answer Sheet
 or both are not in good condition, then ask for immediate replacement. No replacement will be made 5 minutes after the
 commencement of the examination.
- In the ANSWER SHEET (OMR) fill up/shade the required entries (Roll Number, Test Center Code, Test Paper Code, Question Booklet Number etc. in the space provided) using black/blue ball point pen.
- Part-A of the Question Booklet contains 25 Questions. Part-B of the Question Booklet contains 75 Questions. A candidate
 is required to answer all the questions.
- 6. All questions are in MCQ Pattern. There is only one most appropriate correct answer for each question.
- All questions carry equal marks. There will be negative marking. Each correct answer carries 01 mark and for each wrong/incorrect answer 0.25 mark will be deducted. Question not attempted will not be assessed.
- 8. Darken only one circle for each question. If you darken more than one circle for the question, it will be deemed as wrong/incorrect answer. Any change in the answer once marked is NOT allowed.
- 9. Use the Answer Sheet (OMR) carefully. No spare Answer Sheet will be given.
- 10. Do not make stray marks on the OMR Sheet.
- 11. After completion of examination, a candidate will be allowed to take Question Booklet and Candidate's copy of OMR answer sheet with him/her. However, each candidate must ensure to handover original copy of OMR sheet to the invigilator. In case a candidate takes away the original OMR answer sheet, his/her examination will be treated as cancelled.
- No candidate will be allowed to leave the examination hall before completion of Entrance Test. Total time allowed for the paper is 2 Hours.
- 13. Calculator, Tables or any other Calculating Devices, Mobiles, Pagers, Booklets, Papers etc. are strictly prohibited.
- 14. Rough work should be done on the blank space provided in this Question Booklet. No extra paper will be provided.

SEAL

PART-A

1.	If the difference between simple interests for amount will be,	3 years and 4 years at 5% annual rate is 42, then the
	(A) Rs. 210 (C) Rs. 750	(B) Rs 280 (D) Rs. 840
2	The sum of three consecutive even integer is 5	•
2.	(A) 18	(B) 14
	(C) 16	(D) 12
3.	Area of circle and a square is equal. Ratio of or	ne side of the square to radius of the circle will be,
	(A) 1:√π	(B) √π:1
	(C) 1:π	11 14 14
4.	Fill in the blank to complete the series: 181, 174	,,,,
	(A) 174 (C) 178	(B) 176 (D) 180
5.	'Tree' is related to 'Forest' in the same way as '	The state of the s
J.	(A) Battle	(B) Army
	(C) Gun	(D) General
6.	Pointing to a gentleman, Deepak said, "His only	brother is the father of my daughter's father." How is
0.	that gentleman related to Deepak?	in the state of th
	(A) Father	(B) Grandfather
	(C) Brother-in-law	(D) Uncle
7.	Complete the series BEP, CIQ, DOR, FUS, GA	
	(A) HEV (C) IET	(B) HIT (D) IEU
8.	Convert 36 km/hr into meters per second.	and the same of th
- Ti	(A) 10	(B) 12
	(C) 15	(D) 20
9.	'Wings of Fire' was written by	57 - 1 7 - v 1 7 - v 1 7 - 1 1
	(A) APJ Abdul Kalam	(B) Salman Rushdie
	(C) Amitav Ghosh	(D) Shashi Tharoor
10.	'Chhau' dance is associated with which of the fo	
	(A) Punjab	(B) Maharashtra
	(C) Jammu Kashmir	(D) Jharkhand
11.	1	
•	(A) Bihar	(B) West Bengal (D) Gujrat
-52	(C) Utter Pradesh	and the first the second
12.	Jhansi was annexed by which of the following G	
	(A) Lord Bentinck (C) Lord Cornwalis	(B) Lord Dalhausie (D) Lord Clive
13.		Swaraj is my birth right and I am going to have it."
13.	(A) Bal Gangadhar Tilak	racial to the bitter light and rain going to have it.
	(B) Subhas Chandra Bose	State of the state
	(C) Mahatma Gandhi	- XE r
	(D) Jawahar Lal Nehru	

14.	Choose the correct word to fill in the years of dedicated teaching.					,,,
	(A) Facilitated (C) Fantasized	(D)	Felicitated Facillitated			
15.	Choose the correct word to fill in the present on the occasion	e blank. Dhoni as	s well as the ot	her team men	nbers of Indian tea	an
	(A) were (C) has	(B) (D)	was have	J. 2. W. J.	and started t	
16.	Choose the word most similar in me	aning: Awkward		1 155		
	(A) Inept (C) Suitable	(B) (D)	Careful Dread full			
17.	Choose the correct verb to fill in the	blank below	A T - Hall to	in heatathic		
	Let us					
	(A) Introvent (C) Atheist	(B) (D)	Alternate Altruist			
18.	Select the most suitable Synonym for	or the word 'RESI	LIENT'.		of all leaves of	
	(A) Stretchable (C) Rigid		Spirited Buoyant	st-9 (E)	L. A. Ky	
19.	Select the most suitable Synonym for	or the word 'ZEST	7.			
	(A) Humour (C) Attitude	(B) (D)	Keen Interest Liking	lagranda megal	This is not a	
20.	Select the most suitable Antonym for	r the word 'ROBL	JST'.			
	(A) Sturdy (C) Muscular	1 /	Ridiculous Feeble			
21.	Select the most suitable Antonym for	r the word 'DULL'	in the control of	ne gatt the 1	id late clienti si	
	(A) Monstrous (C) fascinating	(D)	Horrid Ghastly	(E)		
22.	Select the pair which shows the san	ne relationship as	CANE : BAMBO	00 10 10 11		
	(A) Wood : Woodpecker					
	(B) Timber: Tree		a de la companya del companya de la companya del companya de la co		Thirty of S.	
	(C) Rubber : Malaysia (D) South Africa : Apartheid		the greatency		Design of the control	. 6
23	Why were you absenty	our dance classes	s vesterday?	(6)	and the second	
20.	(A) for	(B)	from .			
	(C) in	(D)	to, and unit	legent toppel		
24.	A man is facing towards South. He facing side of the man?					S
	(A) North-East (C) South-East	(B) (D)	North-West South-West			
25.	If the value of "x" is 25% less than the	ne value of "y". Ho	ow much % y's i	s more than th	at of x's?	
		A TOTAL				
	(A) $33\frac{1}{3}\%$	(# (L.S) 17 (B)	The straight,	15- 126-	the property of	
	(A) $33\frac{1}{3}\%$ (C) 75% (A) $33\frac{1}{3}\%$ (C) 75% (C) 75%	(D)	$66\frac{2}{3}\%$	(N)		

PART - B

26. Solution of the differential equation
$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$
 is

$$(A) e^y = x + e^x + c$$

(B)
$$e^y = x^2/2 + e^x + c$$

(C)
$$e^y = x^3/3 + e^x + c$$

(D)
$$e^y = x^4/4 + e^x + c$$

27. The integrating factor of the differential equation
$$(1-x^2)dy/dx + 2xy = x\sqrt{1-x^2}$$
 is

(A)
$$\frac{1}{1-x}$$

(B)
$$\frac{1}{1-x^2}$$

(C)
$$1-x^2$$
 (D) $1-x$

(D)
$$1 - x$$

28. The solution of differential equation
$$\frac{d^2y}{dx^2} + 4y = 0$$
 with initial conditions $y = 2$ and $dy/dx = 0$ when $x = 0$ is

(A)
$$y = 2\sin 2x$$

(B)
$$y = 2\cos 2x$$
 (C) $y = \sin 4x$ (D) $y = \tan x$

(C)
$$y = \sin 4x$$

(D)
$$y = \tan x$$

29. Which of the following is a particular integral of
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{5x}$$
?

(A)
$$\frac{1}{12}e^{5x}$$

(B)
$$e^{-5x}$$

(D)
$$e^{x^2}$$

30. Let
$$D=:d/dx$$
. Then the value of $\left\{\frac{1}{xD+1}\right\}x^{-1}$ is

(A)
$$\log x$$

(B)
$$\frac{\log x}{x}$$

(C)
$$\frac{\log x}{x^2}$$

(D)
$$\frac{\log x}{x^3}$$

31. If
$$y_1(x)$$
 and $y_2(x)$ are two solutions of $\frac{d^2y}{dx^2} + 4y = 0$, then the value of Wronskian is

32. Differential equation of the family of parabola
$$y^2 = 4ax$$
, where a is an arbitrary constant is

(A)
$$y = 2x(dy/dx)$$
 (B) $y = dy/dx$

(B)
$$y = dy/dx$$

(C)
$$y = 2x + dy/dx$$
 (D) $dy/dx + y^2 = x^2$

33. The orthogonal trajectory of the hyperbola xy = a is

$$(A) x^2 - y^2 = a$$

(B)
$$x^2 = ay^2$$

$$(C) x^2 + y^2 = a$$

(D)
$$x = ay^2$$

34. The order of differential equation
$$\frac{dy}{dx} = \sqrt{x} + \sqrt{y}$$
 is

(A) 1

(B) 2

(C) 3

35. Solution of the initial value problem
$$e^x(\cos y \, dx - \sin y \, dy) = 0$$
 with $y(0) = 0$ is

$$(A) e^x \cos y + 1 = 0$$

(B)
$$e^x \cos y - 1 = 0$$

$$(C) e^y \cos x + 1 = 0$$

$$(D) e^y \cos x - 1 = 0$$

36. If
$$F(x,y,z) = xy^2 + 3x^2 - z^3$$
, then the value of $\nabla F(x,y,z)$ at $(2,-1,4)$ is equal to

(A)
$$13i - 4j - 48k$$
 (B) $i - 4j - k$ (C) $13i + j - 6k$ (D) $-13i + 4j - 6k$

(C)
$$13i + j - 6k$$

(D)
$$-13i + 4j - 6k$$

37.	The directional deri in the direction of 6	vative of the function $i + 2j + 3k$ is	on $F(x,y,z) = xy^2$	$-4x^2y+z^2$ at $(1,-1,2)$
	(A) 1/7	(B) 2/7	(C) 54/7	(D) 7
38.	If $\overrightarrow{F} = zi + xj + yk$	t, then $\operatorname{curl} \overrightarrow{F}$ is		and the same
	(A) $i+j+k$	(B) 0	(C) $i-j-k$	(D) $2i + j - 2k$
39.	Let F be a finite field of F ?	eld. Then which of t	he following may be	the possible cardinality
	(A) 15	(B) 20	(C) 25	(D) 30
40.	Every subgroup of	an abelian group is		
	(A) abelian		(B) cyclic	
	(C) non abelian	. *	(D) none of the abo	ove.
41	([]	,		eration defined by usual
	matrix multiplicati	on. Then the inverse	of $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is	Super Contract Contract
	(A) $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$	(B) $\begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$	(C) $\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$	(D) $\begin{bmatrix} 1/8 & 1/8 \\ 1/8 & 1/8 \end{bmatrix}$
42.	Let H and K be sulf of G ?	ogroups of G . Then w	which of the following	is necessarily a subgroup
	(A) HK	(B) <i>KH</i>	(C) $H \cap K$	(D) $H \cup K$
43	Let S_5 be the permutation $\sigma = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	nutation group on from $\begin{pmatrix} 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 \end{pmatrix}$ is equal	ve symbols $\{1, 2, 3, 4\}$ to	,5}. Then order of per-
	(A) 5	(B) 4	(C) 3	(D) 6
44.	Let G be a group a solves the equation		on-identity elements.	Which of the following
	(A) acb^{-1}	(B) $a^{-1}b^{-1}$	(C) $a^{-1}cb^{-1}$	(D) cb ⁻¹
45.	Let H be a subgrou	ip of a noncyclic grou	up G . Then which of	the following is correct?
	(A) H is always no	ncyclic	(B) H is always cyc	elic
	(C) H is always no	nabelian .	(D) None of the ab	ove
46.	Let S_6 be the perm lowing is not an even	(a) (A) (A) (A) (A)	x symbols $\{1, 2, 3, 4,$	5,6}. Which of the fol-
	(A) (1 3 5 6 2)	To area a	(B) (1 2 3)(4 5)(4 5	5)
	(C) (2 6 3 4 5 1)	egts but 0 =	(D) (1 2)(1 4)(2 3)	(4 5)
		The second of	n to Pu Pu	

15-15-04

47. Which of the following is correct?

	(A) Every integ	gral domain is a field.			
	(B) Every finite	e integral domain is a	field.		
	(C) There is an	integral domain with	n characteristic equal t	o 10.	
	(D) None of the		. 1 . 65		
48.	Let J be an ide such that $u \in J$	eal of commutative ring. Then	ng with unity and let a	ι be an unit element	of R
	(A) The multip	blicative identity $1 \notin \mathcal{L}$	J		
	(B) J is a prop	er ideal of R such tha	at $J \neq R$		
	(C) $J = R$			fully understall to be	edition of which
	(D) There is a	minimal ideal M such	that $J \subset M \subseteq R$	•	
49.	Which of the fo	ollowing is a prime ide	eal of $(\mathbb{Z}, +, \cdot)$?	*0	
	(A) 6Z	(B) 2ℤ∩4ℤ		(D) 4Z ∩ 8Z	
50.	If $Z = 2 - 3i$, t	hen $ Z $ equals			17. 13.7
9	(A) 13	(B) $\sqrt{13}$	(C) -13	(D) -1	and any same
	\mathcal{C}^1		The second secon	1 2 1 16 1 2 1 16 1	1 00
51.	$\int_0^1 ze^{2z} \ dz \ \text{equa}$	als	H K FILL		1
	(A) $e^2 + 1$	(B) $(e^2+1)/4$	(C) $(e^2-1)/4$	(D) $e^2 - 1$	
52.	$\lim_{z \to i} \frac{Z^{10} + 1}{Z^6 + 1} $ equ	nals World Co.	n are	CAPE,	$MH^{-}(Y)$
	(A) 3/5	(B) 2/5	(C) 5/3	(D) 1/3	or od od 2 fed
		1- <i>i</i>	65 (80)	16 1 21	- complete
53.	The integral \int_{3i}	4z dz equals	£ (O)	2 (H)	
	(A) $18-4i$	(B) -4 <i>i</i>	(C) i	(D) -i	never a second
54.	If $f(z)$ is analytic	ic in a simply connect	ed domain D and $f'(z)$) is continuous in D,	then
	$\oint_C f(z) dz$ equals	1.10	1-4-y to ((J)	4 = (a)	(- Am []
	(A) 0	(B) 1	(C) 2πi ⁻ (C) αυσι	(D) $-2\pi i$	be the reduction
	m	, [5	$z + 7^{\text{win}} \cdot \frac{1}{2} \cdot (cd)$	jo sumj	Province 4 (A)
55.	The value of the	e integral $\int_{ z-2 =2} \overline{z^2} dz$	$\frac{z+7}{+2z-3}$ dz is equal to	anilydeapa	greates the
	(A) πi	(B) 2πi	(C) 3πi	(D) $6\pi i$	Let S, be the pe
56.	If $f(z) = u(x, y)$	+iv(x,y) is analytic	in a domain D , then	Automicianist and	utt 300 et grift
	$(\Lambda) \frac{\partial^2 u}{\partial u} + \frac{\partial^2 u}{\partial u}$	$\partial^2 v = \partial^2 v$	$= 0 \text{ (B) } \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	$\partial^2 v \cdot \partial^2 v$	(A, (12562)
	(C) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 7$	$\neq 0$ and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} =$	$= 0 \text{ (D)} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq 0$	0 and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq$	0
104	30.0		IC-61		PG-QP
	T. T. O'T H. J. L.		I Carrott		10-41

57.	(A) infinitely differentiable (C) not differentiable	(B) finitely differ(D) identically z		
58.	Which of the following is incorrect sta	atement?		
001	(A) If $f(z)$ is entire and bounded in c		f(z) is constant.	
	(B) If $f(z)$ is analytic at z_0 , then $f'(z)$			
	(C) Analytic function is entire.	A Army Market		
	(D) Entire function is analytic.			
59	The complex line integral is			
00,	(A) path dependent	(B) independent	of end points	
	(C) path independent	(D) none of these	Section was the season	
60	The set of all feasible solutions to a li	near programming p		
OU	(A) a concave set			
	(C) a bounded set		t only	
61	A basic feasible solution to a LPP, in is	which at least one of	the basic variables	is zero
	(A) degenerate (B) infeasible	(C) non-degenera	te (D) unbounded	
62	The optimal solution of the LPP: Ma $3x_1 + x_2 \ge 90$, $x_1, x_2 \ge 0$, is	$ximize Z = 4x_1 + x_2$	2, such that $x_1 + x_2$	≤ 50,
•	(A) $x_1 = 30, x_2 = 0$	(B) $x_1 = 20, x_2 =$	30 '	
	(C) $x_1 = 0, x_2 = 0$	(D) $x_1 = 0, x_2 = 5$	50	
63.	Which of the following is incorrect sta	itement?		
	(A) Arbitrary intersection of convex s		distroyth o	
	(B) Hyperplane is a convex set.	100	- No a least of	1
	(C) Union of two convex sets need not	t to be a convex set.		
	(D) Union of two convex sets is a conv	vex set.	Ti-see	
64.	In a linear programming problem cons	TOLLING CO. C.		
	(A) nonlinear			
	(C) linear as well as nonlinear			
65.	The sequence $\left\{\frac{1}{n}\right\}$ is		to price at a local	
		(C) oscillatory		1 - 5 - 5
66.	$\lim \frac{2n-3}{n}$ equals	all as spectrum =	, - 0 · · · · · · · · · · · · · · · · · ·	A mercuri vii
	$n\to\infty \ n+1$ (A) 0 (B) 1.53 (C)	(C) 2	(D) e	

67. The series
$$\sum_{p=1}^{\infty} \frac{n+1}{n^p}$$
 is convergent for

(A)
$$0$$

(B)
$$1$$

(C)
$$p = 2$$

(D)
$$p > 2$$

68. The series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$$
 is

(A) convergent

- (B) divergent
- (C) conditionally convergent
- (D) absolutely convergent

69.
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$
 equals

- (A) e
- (C) 0
- (D) 1

70. Which of the following statements is false?

- (A) Every bounded sequence is convergent.
- (B) Every convergent sequence is bounded.
- (C) Every bounded sequence has a limit point.
- (D) Every convergent sequence has a unique limit.

71. If a series $\sum_{n=0}^{\infty} a_n$ converges, then

(A)
$$\lim_{n\to\infty} a_n = 0$$

(B)
$$\lim_{n\to\infty} a_n = \infty$$

(C)
$$\lim_{n\to\infty} a_n = 1$$

(B)
$$\lim_{n\to\infty} a_n = \infty$$
 (C) $\lim_{n\to\infty} a_n = 1$ (D) $\lim_{n\to\infty} a_n = 10$

72. If
$$f: \mathbb{R} \to \mathbb{R}$$
 is defined by $f(x) = |x - c|$, for all $x \in \mathbb{R}$; then

- (A) f is discontinuous
- (B) f is differentiable
- (C) f is continuous but not differentiable
- (D) f is continuously differentiable

73. The function
$$f(x) = \begin{cases} x \sin 1/x, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$
 is

- (A) continuous at x = 0
- (B) derivable at x = 0
- (C) discontinuous at x = 0
- (D) infinitely differentiable at x = 0

74. If Rolle's theorem holds for
$$f(x) = x^3 + ax^2 + bx$$
 on $[-2, 2]$ at $x = 1$, then

- (A) a = 1/2, b = -4
- (B) a = 2, b = -4
- (C) a = -1/2, b = 4

(D) a = 4, b = 1/2

75. The local maxima of
$$x^3 - 3x + 3$$
 is attend at

- (A) x = -1
- (B) x = 1
- (C) x = 0

76. The function
$$f(x) = \sin 3x, x \in [0, \pi/2]$$
 is increasing in the interval

- (A) $(0, \pi/6)$
- (B) $(\pi/6, \pi/2)$
- (C) $(0, \pi/2)$
- (D) $(\pi/3, \pi/2)$

		2	1	
77.	The function $f(x) =$	x^2 is not uniformly	continuous on the i	interval
	(A) $[-1,1]$	(B) [1, 2]	(C) [0, ∞)	(D) [0, 1]
78.	Every compact set o	f real numbers is		10.7
	(A) open		(B) closed	the parties of
	(C) closed and boun	ded	(D) open and bound	ded
79.	The set R of real rea	al numbers is	82	48
	(A) closed		(B) bounded	a way part of
	(C) countable		(D) none of the abo	ove .
80.	The upper limit of	the sequence $\{(-1)^n$	} is	
	\$100 at 100	(B) -1	(C) 0	(D) 2
81.	If $f(x, y)$ is a homog	geneous function of d	egree n in x and y an	nd has continuous partial
		$\frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is equal to		
	(A) f	(B) nf	(C) 0	(D) $n(n-1)f$
82.	$\lim_{(x,y)\to(2,1)}(x^2+2x-$	y^2) equals		tie of the same
	$(x,y) \rightarrow (2,1)$ (A) 0	(B) -7	(C) 7	(D) -1
00		· /		
83.	The radius of conve (A) 0	(B) 1	$1 + 2x + 3x^2 + 4x^3 + (C) \infty$	(D) 2
a.		The state of	10.76	(D) 2
84.	The value of the in	tegral $\int_0^1 \int_0^x e^{y/x} dx$	dy is	and the state of
	$(A) \frac{(e-1)}{2}$	(B) $\frac{(e+1)}{2}$	(C) e	(D) e^2
85.	The value of the sun $x^2 + y^2 + z^2 = a^2$ is	rface integral $\int \int_S (x^3)$	3 dy $dz + y^3$ dz $dx + z^3$	$(x^3 dx dy)$ over the sphere
	(A) $\frac{12}{5}\pi a^5$	(B) πa^5	(C) $\frac{5}{12}\pi a^5$	(D) πa^2
86.	Which of the follow	ring sets forms a bas	is of \mathbb{R}^2 ?	
	(A) $\{(1,1), (3,1)\}$		(B) {(0,1), (0,-3)}	
	(C) {(2,1), (1,-1), (3,0)}	(D) {(1,0), (2,0)}	
		(2 1 1)	DIT WILL IN	
87.	Rank of the matrix	$\begin{pmatrix} 0 & 3 & 0 \\ 3 & 1 & 2 \end{pmatrix}$ is equa	l to	Top make 3
	(A) 1	(B) 2	(C) 3	(D) 4

- 88. Which of the following functions $F: \mathbb{R}^2 \to \mathbb{R}^2$ is not a linear transformation?
 - (A) F(x,y) = (x + y, x y)
- (B) F(x,y) = (x + y, x)
- (C) F(x,y) = (2x y, x)
- (D) F(x, y) = (x, 1 + y)
- 89. The dimension of the vector space of all 3×3 real symmetric matrices is
 - (A) 9
- (B) 6
- (C) 3

- 90. The determinant of $\begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix}$ is
 - (A) (z-x)(z-y)(y-x)
- (B) $(z-x)^2(z-y)(y-x)$
- (C) $(z^2 x^2)(z^2 y^2)(y^2 x^2)$
- (D) $(z-x)^2(z-y)^2(y-x)^2$
- 91. If $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, then M^{2019} equals

- $(A) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \qquad (B) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad (C) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad (D) \begin{pmatrix} 1 & 2019 \\ 0 & 1 \end{pmatrix}$
- 92. Which of the following matrix is singular?
- $\text{(A)} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \text{(B)} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \text{(C)} \begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix} \qquad \text{(D)} \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$
- 93. If $M = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$, then the eigenvalues of M are
 - (A) -4 and -3
- (B) 4 and 3
- (C) 2 and 0
- (D) 3 and -3
- 94. Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by F(x,y) = (2x + 3y, 4x 5y). Then the matrix representation of the linear transformation relative to basis B = $\{(1,0),(0,1)\}$ is
 - (A) $\begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix}$ (B) $\begin{pmatrix} 0 & -3 \\ 4 & 5 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

- 95. The eigenvalues of a skew-symmetric matrix are
 - (A) always pure imaginary
- (B) always zero
- (C) either zero or imaginary
- (D) always real
- 96. If $M = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, which of the following is a zero matrix?
 - (A) $M^2 7M 6I$ (B) $M^2 7M + 6I$ (C) $M^2 6M 7I$ (D) $M^2 6M 7I$
- 97. Let $T: V_n(F) \to V_m(F)$, where $V_n(F)$ and $V_m(F)$ are finite dimensional vector spaces. Then
 - (A) $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim (V_n(F))$ (B) $\operatorname{rank}(T) = \operatorname{nullity}(T)$

 - (C) $\operatorname{rank}(T)$ $\operatorname{nullity}(T) = \dim (V_n(F))$ (D) $\operatorname{rank}(T)$ $\operatorname{nullity}(T) = \dim (V_n(F))$

98. The singleton set $\{x\}$ is linearly dependent if

(A) x = 0

(B) $x \neq 0$

(C) x is a scalar (D) none of these

99. The eigenvalues of an orthogonal matrix are

(B) imaginary

(C) always negative (D) of unit modulus

100. Degree of the differential equation $dy = (y + \sin x)dx$ is

(A) 1

(B) 2

[C-11]

CUCET-2018 MSc Mathematics

۱.	Which of the following best expresses the mean A) Elevate B)-Irritate	aning of 'Exasperate'? C) Distrust D) Transcend
2.	Which of the following is opposite in meaning	g to the word 'Captivate'?
	A) Canvass B) Fascinate	C) Offend D) Campaign
3.	Which of the alternatives best expresses t sentence?	the meaning of the underlined phrase in the following
	Sheetal is in the habit of taking French leave A) Taking sick leave C) Taking leave on medical grounds	very often. B) Taking extra ordinary leave D) Taking leave without permission
4.	Below are given three statements, such as P, the given statements to be true even if they then decide which of the conclusions logicall Statements P. All books are notes. Q. Some notes are watches.	Q, and R, followed by four conclusions. You have to take appear to be at variance with commonly known facts and ly follow(s) from the given statements.
	R. No watch is a pencil.	
	Conclusions I. Some watches are books. III. No watch is a book.	II. Some notes are pencils.
	A) I and either II or IV followC) I, II and III follow	IV. Some notes are not pencils.B) I, III and IV followD) Either I or III and IV follow
5.	At which of the following places is the India	an National Defence University being set up?
	A) Hyderabad, TelanganaC) Gurgaon, Haryana	B) Bhubaneswar, Odisha D) Jodhpur, Rajasthan
6.	Who was the last Hindu king of North India	1?
	A) PushyabhutiC) Pushyamitra	B) Harshavardhana D) Skandagupta
7.	Which one of the following travelers visited	India during the Gupta period?
	A) Hiuen-Tsang B) Fa-Hien	C) Marco Polo D) Nicolo Conti
8.	The 'International Day of Older Persons' is	observed every year on
	A) 1 October B) 2 nd October	C) 3 rd October D) 4 th October
9,	Santosh Trophy is related to	
	A) Cricket B) Hockey	C) Football D) Badminton
10.	The is the fall form of 111 IF in data com	munication?
	A) Hardware Test Trial Protocol C) Hyper Text Transfer Protocol	B) Hyper Text Transfer Package D) Hyphenated Text Transfer Protocol
11.	Bango of the Fredhole of the Indian Col	nstitution has been borrowed from
	A) US C) Australia	B) Canada D) Ireland

	Which of the following terms is used in banking	or fin	ance?	
	A) Moral Suasion C) Jacksonian Seizure	D)	Incarnation	
13.	The Nawabganj Bird Sanctuary in Uttar Pradesh A) Govind Ballabh Pant C) Ram Prasad Bismil	has b B) D)	een renamed after Ashfaqullah Khar Chandrashekhar A	
14.	$1^3 + 7^3 + 13^3 = ?$ A) 254 B) 2541	C)	2540	D) 25400
15.	If a sum of money doubles itself in 6 years, it be A) 12 years B) 24 years	come C)	s 5 times in how m 10 years	nany years? D) 13 years
16.		ns 109	% water. How much	ch water should be added to it so
	A) 50 B) 150	C)	200	D) 375
17.	Three years ago, the average age of a family of the average age of the family is now the same as	s beto	members was 16 ore. Find the age of Two years	years. A baby having been born, the baby.
	A) One yearC) Three years	- /	Four years	
18.		one h	our. If the distance	travelled in the first hour was 35
	A) 562 km C) 482 km	B		
19.	. Ashish drives his car extremely fast when there	is ra	infall.	
	The underlined word is an example of		,	
	A) Noun B) Adverb	C) Adjective	D) Pronoun
20.	Which of the following is correctly spelt?A) CommodiousB) Commodius	C	C) Commodous	D) Commodos
21.	 Which part of the following sentence contains A) Never I have listened / B) to such beautiful m 	error usic/	? C) as the piece we	heard / D) on the radio last night.
22.	Which of the alternatives is correct, if the follow	owing	sentence is chang	ged into passive voice?
	Open your door.			Company of the second control of the
	A) Your door has opened.C) Let your door be opened.		Has your doorLet's open you	
23.	. Which part of the following sentence contains	етто	r?	A decidence of the
	A) Ganges, one of the most sacred rivers / which flows through the nations of India and	B) to Bang	Hindus, / C) is a ladesh	trans-boundary river of Asia / D)
24.	. He has fear of heights. A) A B) An	JW o	C) The	D) None of the above
25.	. Select the correct plural of 'arch'			
	A) Arches B) Archs	11	C) Archees	D) Arch

PART-B

- 26. The integral $\int_{|z|=2}^{\infty} \frac{\cos z}{z^3} dz$ equals
 - A) ni

B) -πi

C) 2ni

- D) -2 mi
- 27. For every path between the limits, $\int_{-2}^{-2+t} (2+z)^2 dz$ is equal to
 - A) i/3

B) i/2

C) -i/3

- D) -i/4
- 28. The value of $\int_{0}^{2+i} (z)^2 dz$ along the line 2y = x is
 - A) $\frac{5}{3}(2+i)$

B) $\frac{5}{3}(2-i)$

C) 2-i

- D) none of these
- 29. The diagonal elements of Hermitian matrix are
 - A) complex number

B) real number

C) natural number

- D) none of these
- 30. The vectors (1/4, 0, -1/4), (1/3, -1/3, 0)) and (0, 1/2, 1/2) are
 - A) linearly independent,

B) linearly dependent

C) constant

D) none of these

- 31. If A and B are two matrices then
 - A) rank (AB) = rank ($B^{T}A^{T}$)

- B) $\operatorname{rank}(AB) = \operatorname{rank}(A^TB^T)$
- C) rank (AB)not equal to rank Rank (AB)^T
- D) none of these
- 32. The value of determinant $\begin{vmatrix} b^2c^2 & bc & b+c \\ c^2a^2 & ca & c+a \\ a^2b^2 & ab & a+b \end{vmatrix}$ is
 - A) abc

B) $a^2b^2c^2$

C) bc + ca + ab

- D) zero
- 33. If V is n dimensional vector space then any subset of V containing m vectors is linearly independent if
 - A) m < n

B) n < m

C) m=n

- D) None of these
- 34. The singleton set $\{\alpha\}$ is linearly independent iff
 - A) $\alpha = 0$

B) $\alpha \neq 0$

C) a is a scalar

- D) None of these
- 35. If V is finite dimensional vector space and W is any other vector space both over the same field F and T:V → W is a linear transformation then
 - A) rank(T) + nullity(T) = dim V
- B) rank(T) = dim V + nullity(T)
- C) rank(T) + dim(V) = nullity(T)
- D) rank(T) = nullity(T)

$$2z + y = 5$$

36.	The system of equations	x - 3y = -1	is consistent when $k =$
-		3x + 4y = k	

A) 1

B) 2

C) 5

D) 10

37. If
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$$
 then the characteristic polynomial for A is

A) $x^3 + 5x + 8x + 4$

B) $x^2 + 5x$

C) $x^3 - 5x + 8x - 4$

- D) None of these
- 38. If two vectors are linearly dependent then for some scalar c
 - A) $\alpha = c\beta$

C) $\alpha = c - \beta$

- D) None of these
- 39. A matrix M has eigen value values 1 and 4 with corresponding eigen vectors $(1, -1)^T$ and $(2, 1)^T$ respectively. Then M is
 - A) $\begin{pmatrix} -4 & -8 \\ 5 & 9 \end{pmatrix}$

- $\begin{bmatrix} 3 & 2 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$ $= \begin{bmatrix} 2 & -\lambda & 2 & -1 \\ 2 & 2 - \lambda & -1 \\ 2 & 2 & -\lambda \end{bmatrix} = 0$
- 40. If V is the vector space of $m \times n$ matrices over the field K then dim V is
 - A) n

B) m

C) mn

- D) m-n
- $\frac{1}{3}(3-\lambda)$ \{-2\lambda+\lambda^2+2\} 41. If M is a 7×5 matrix of rank 3 and N is a 5×7 matrix of rank 5 then rank MN is

B) 2

C) 5

- D) 3
- 42. Theeigen values of a skew-symmetric matrix are
 - A) always zero

B) always pure imaginary

C) either zero or imaginary

- D) always real
- The system of simultaneous linear equations x + y + z = 0 and x y z = 0 has
 - A) no solution in \mathbb{R}^3

- B) a unique solution R^3
- C) infinitely many solutions in R^3
- D) more than 2 but finitely many solutions in R^3
- 44. If $A = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}$ and I is the 2×2 identity matrix then which of the following the zero matrix?
 - A) $A^2 A 5I$

B) $A^2 + A - 5I$

C) $A^2 + A - I$

- D) $A^2 3A + 5I$
- 45. The rank of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x \ y \ z) = (y \ 0 \ z)$ is
 - A) 0

B) 1

C)

- 1 0 0] = [4+3 **3** 1] = 6-3 3+1] =

AI=

(CSIR NET, GATE & JAM Complete Study Materials and Solution Available. Visit www.pkalika.in)

46.	Let $(Z, *)$ be an algebraic structure, where Z operation defined by $n*m == \max\{n, m\}$. Then	is the set of integers and the operation "*" is a bina (Z, *) is a	ary
	A) groupoid C) monoid	B) semigroup D) group	
47.	Let $(G, *)$ be an algebraic structure where G is operation defined by $a*b = \frac{ab}{4}$ for all $a, b \in G$.	the set of all non-zero real numbers and '*' is a bina Then the inverse of 'a' in G is	ary
	A) $\frac{a}{4}$	B) 16a	

- A) normal sub group
 C) quotient group
 B) abelian group
 D) lagrange group

 49. Every sub group of an Abelian group 'G' is a
 A) conjugate group
 C) normal sub group
 D) lagrange group
 D) lagrange group
 - 50. If H, K are two subgroups of a group G then HK is a subgroup of G iff
 A) HK ≠ KH,
 B) HK ⊂ KH
 C) HK ⊃ KH
 D) HK = KH
 - 51. The inverse of an even permutation is

 A) odd permutation

 B) even permutation

 C) even or odd permutation

 D) none of these

 52. The product of permutations (1 2 3)(2 4 3)(1 3 4) is
 - A) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 2 & 1 \end{pmatrix}$ B) $\begin{pmatrix} 1 & 2 & 5 & 3 \\ 1 & 6 & 5 & 4 \end{pmatrix}$ C) $\begin{pmatrix} 1 & 2 & 5 & 3 \\ 1 & 2 & 3 & 4 \end{pmatrix}$ D) I
 - 53. The order of identity element in an additive group of integers is
 A) zero
 B) infinity
 C) one
 D) two
 54. A ring R is an integral domain if
 - A) R is a commutative ring
 B) R is a commutative ring with zero divisor
 C) R is a commutative ring without zero divisor
 - D) R is a ring with zero divisor
 - 55. If the number of left cosets of a subgroup H in a group G in and the number of right cosets of H in G is m then
 - A) $m \ge n$ B) $m \le n$ C) m = nD) $m \ne n$

50 A 5-111-	[19]
56. A field is a	
A) vector space C) division ring	B) integral domainD) commutative ring
57. The homomorphism ϕ from the ring R int	to ring R is an isomorphism iff the kernel $I(\varphi)$ is
A) $I(\phi) = \{0\}$	
B) $I(\phi) = R$	
C) $I(\phi) = R'$	
D) None of these	
58. If F is a field then its only ideals are	
A) Fonly C) both F and (0)	B) (0) only
C) both F and (0)	D) None of these
59. If R is a commutative ring with unit elen	
A) RM is a field C) R/M is a field	B) R/M is a field D) None of these
60. The solution of (D^2+1) y = 0 satisfying t	the initial conditions $y(0)=1$ and $y'\left(\frac{\pi}{2}\right)=1$ is
A) $y = 2x + \sin x$	B) $y = \cos x + 2\sin x$
C) $y = \cos x + \sin x$	D) $y = 2\cos x + 2\sin x$
61. The particular integral of the ODE $(D^2 +$	$+1)v = \cos x + 2\sin x \text{ is}$
A) $\frac{x\cos 2x}{x}$	B) $-\frac{x\cos 2x}{4}$ D) $-\frac{x\sin 2x}{4}$ The second of the property of curves $x^2 - y^2 = a^2$ is $\cos x + 2\sin x$ $\sin $
xsin2x	D) $-\frac{x\sin 2x}{\cos x}$
C) 4	4 Sinz
62. The orthogonal trajectories of the family	y of curves $x^2 - y^2 = a^2$ is
A) $x^2 + y^2 = c^2$	2.00
Υ	PE = 12/1 Ox(c1cosx+c
B) $\frac{x}{y} = c$	2
C) $xy = c$	
D) none of these	ODE in which the variables
63. The homogeneous ODE $M(x, y)dx + N$	V(x, y)dy = 0 can be reduced to an ODE in which the variables
are separated by substitution	B) $x-y=v$
A) $x + y = v$ C) $xy = v$	D) $y = vx$
C) $xy = v$	(of m m x
64. The integrating factor of the differentia	al equation $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dy}{dx} = 1$ is
	(dx dx) a color com
$e^{-2\sqrt{x}}$	B) $e^{2\sqrt{x}}$ (\sqrt{x}) \sqrt{x} (\sqrt{x}) \sqrt{x} \sqrt{x}
A) $e^{-2\sqrt{x}}$ C) $e^{-2/\sqrt{x}}$	D) $e^{2/\sqrt{x}}$ $($ $)$ $)$ $)$
C) e	" (" M W
	a Ch or on

65	I.F. of the Bernoulli equation	$\frac{dy}{dx} + Py = Qy^n$	is
----	--------------------------------	-----------------------------	----

A) $e^{\int nPdx}$ C) $e^{\int (1-n)Pdx}$

66. Solving by variation of parameters for the equation $y'' + 4y = \tan 2x$, the value of the Wronskian is

A) 1

B) 2

C) 3

D) 4

 $4a \ 2\sqrt{ax}$ dydx changes into 67. By changing the order of integration, the integral

40

D) None of these

68. If an algebraic structure ([0,1], \oplus) and the operation \oplus is a binary operation defined by $x \oplus y = xy$ mod(8) for all $x, y \in ([0,1], \oplus)$, then $([0,1], \oplus)$ is a

A) monoid

B) semi group

C) group

D) abelian group

69. If a feasible solution of a linear programming problem exists, the reason of feasible solutions is

A) convex set

B) connected set

C) non-convex set

D) none of these

70. If the set of feasible solutions of a LPP is a convex set then the optimal solution occurs at

A) extreme point

B) boundary point

C) interior point

D) none of these

71. To convert $\sum a_{ij}x_j \le b_i$ into equality we introduce

A) surplus variable

B) slack variable

C) unrestricted variable

D) none of these

72. Every basic feasible solution in the convex set of solutions of an LPP is a

- A) boundary point
- B) extreme point
- C) non-extreme point
- D) non-boundary point

73. The directional derivative of the function $\phi = 4xz^3 - 3x^2yz^2$ at (2, -1, 2) along z-axis is

A) 244

B) 240

C) 404

D) 144

74. If $A = (3xz^2)\hat{i} - (yz)\hat{j} + (x+2z)\hat{k}$ then curl (curl A) =

- A) $6x\hat{i} + 6y\hat{j} 6z\hat{k}$
- B) $6x\hat{i} + (6y-1)\hat{i}$
- C) $-6x\hat{i} + (6z-1)\hat{k}$
- D) none of these

75. $\nabla \cdot (\nabla \times \nu) =$

A) $\nabla \times (\nabla, v)$

C) 0

D) none of these

76. The series $\frac{2}{1^2} + \frac{3}{2^2} + \frac{4}{3^2} + \frac{5}{4^2} + \frac{6}{5^2} + \dots$ is

- A) conditionally convergent
- B) absolutely convergent
- C) absolutely convergent
- D) none of these

77. The radius of convergence of the series $1-x^2+x^4-x^6+...$ is

- A) 0
- B) 1
- C) 2
- D) none of these

78. If (G, o) is a group 24 the G can have a subgroup order

- A) 5
- C) 8

D) 9

79. PI of the ODE $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^2 + 2x + 4$ is

A) $\frac{x^2}{3} + 4x$

- B) $\frac{x^3}{3} + 4$
- C) $\frac{x^3}{3} + 4x$
- D) $\frac{x^2}{2} + 4$

The relative cost z_j - c_j for a non-basic variable in a simplex table is zero then there exists an alternate 80. optimal solution, provided

- A) it is starting simplex table
- B) it is optimal simplex table
- C) it can be any simplex table
- D) none of these

- 81. If aseries $\sum_{n=0}^{\infty} a_n$ converges then the sequence $\{a_n\}_1^{\infty}$
 - A) diverges

B) converges to zero

C) converges to any number

- D) None of these
- 82. If a sequence is not a Cauchy sequence then it is a
 - A) divergent sequence

B) convergent sequence

C) bounded sequence

- D) none of these
- 83. $\lim_{n\to\infty} \frac{1}{n} \left(1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \dots + n^{\frac{1}{n}} \right)$ is
 - A) 1

B) 2

C) 0

- D) none of these
- 84. If $f(x) = \begin{cases} -x^{\frac{1}{3}} & , -1 \le x \le 0 \\ \frac{1}{x^{\frac{1}{3}}} & , 0 \le x \le 1 \end{cases}$, then
 - A) Rolle's theorem applies to f in [-1, 1]
 - B) Rolle's theorem does not apply to f [-1, 1]
 - C) f is not continuous at x=0
 - D) f'(0)=0
 - 85. The function $f(x) = \frac{|x|}{x}$, $x \ne 0$ may be continuous at the origin, if
 - A) f(0) = 0
 - B) f(0) = -1
 - C) $f(0) = \infty$
 - D) cannot be continuous for any value of f(0)
 - 86. The function $f(x) = \frac{1}{x}$, x > 0 is
 - A) continuous but not uniformly continuous
 - B) discontinuous everywhere
 - C) neither continuous nor uniformly continuous
 - D) uniformly continuous but not continuous
 - 87. The polynomial $2x^3 15x^2 + 36x + 1$ is decreasing in the interval
 - A) (-∞, 2)

B) (3, ∞)

C) (2, 3)

- D) none of these
- 88. For any complex number z = (x, y) in C, if $z.\overline{z} = z$ then $\overline{z} =$
 - A) (0,0)

B) (1, 0)

C) (0, 1)

D) (1, 1)

- 89. An analytic function is
 - A) infinitely differentiable

B) finitely differentiable

C) not differentiable

D) none of these

90.	A non-empty set of real numbers which is bounded to A) supremum C) no upper bound B)	infimum
g1.	A) There exist an infinite sub collection of A which B) There exist an uncountable sub collection of A which C) There exist a finite sub collection of A which C) None of these	covers A
92.	Singleton set $\{x_0\}$ of R is A) open C) neither open nor closed B)	h h
93.	Every compact set of real numbers is A) closed and bounded C) open and bounded B)	- 1 (2 -) - (e) - 11
94.	() Heldrer open nor closed	closed open and closed
95.	Every finite subset R of real numbers has A) exactly one limit point B)	all its points are limit points None of these
96.	If f(z) is analytic in a simply connected domain D the	en for every closed path C in D
97.	A) $\oint_C f(z)dz = 0$ B) $\oint_C f(z)dz = 1$ C) The Cauchy-Riemann equations are A) both necessary and sufficient condition for a corr B) only a necessary condition for a complex function only a sufficient condition for a complex function only a sufficient condition for a complex function only a sufficient condition for a complex function of these	$\oint_C f(z)dz \neq 0$ D) $\int_C f(z)dz \neq 1$ The implex function to be analytic on to be analytic.
98.	The complex line integral is A) path dependent C) independent of end points B)	path independent None of these
99.	An analytic function is A) infinitely differentiable B)	finitely differentiable None of these
100	If $f(z)$ is analytic in a simply connected domain D of Jordan C and $f(z)$ is continuous on C then for any positive equal to A) $\frac{1}{2\pi} \oint_C \frac{f(z)}{z-z_0} dz$ B) C) $2\pi i \oint_C \frac{f(z)}{z-z_0} dz$ (D	
	$C = \frac{z_{m}q}{c} = \frac{z_{m}q}{z_{m}}$	$\int_{C} z - z_0$

CUCET-2017 MSc Mathematics

<u>CUC</u>	ET MSc Math 2017 Que paper	PART-A	
	 Choose the correct homophone for A A) Accent C) Axent 	В)	Assent Axant
	2. Which of the following is an IndianA) BhashC) Panini	В)	an ? Bharata Prakasam
	3. Find the correct expression.A) Between you and IC) Between you and my	B) D)	Between you and me Between you and mine
	4. Pair with harp from the following.A) onC) upon	B) D)	8
	5. Who is the Indian Nobel Laureate foA) Jatin Kumar NaikC) Rabindranath Tagore	B)	e ? Hargobind Khurana Mother Teresa
	6. Who among the following wrote TheA) Mark TwaineC) Rudyard Kipling	B)	ook? R.K. Narayan Rabindranath Tagore
	7. Fill appropriate preposition in the blackThe bread is made wheat to A) ofC) in	flour. B)	from on
	Find the appropriate homonym for AA) AlterC) Altur	В)	Altor Altair
9.	A Simile is a	ימו	Dorallal

CO

A) Contrast

C) Combination

B) Parallel

D) Comparison

[26] PG-QP – 29		
-5-	PG-QP - 29 CUCET MSc Math 2017 Que paper	
	COCLI MOC Math 2017 Que papel	
10. Find the correct idiom.		
A) Better safe than sad	B) Better safe than serious	
C) Better safe than sorry	D) Better safe than regretful	
11. A can do a piece of work in 80 days. He finishes the remaining work in 42 days. I together, finish the work?	works at it for 10 days and then B alone (n how much time will A and B working B) 35 days	
A) 40 days	D) 30 days	
C) 50 days	D) 30 days	
12. Choose the missing term out of the given	alternatives Y, W, U, S, Q, ?, ?	
A) M, L	B) J, R	
C) L, M	D) O, M	
13. In a certain language, PEN is written as QI code?	OM, then how BOOK will be written in that	
A) CMJN	B) CNNJ	
C) CNLS	D) NMJP	
14. After deducting a commission of 5%, a TA) Rs. 10,000C) Rs. 10,100	N. set costs Rs. 9595. Its marked price is. B) Rs. 10,075 D) Rs. 10,500 m of money double in 16 years? B) 6,00% p.a.	
A) 6.25% p.a. C) 6.75% p.a. C) 6.75% p.a.	D) 6.50% p.a.	
16. In a exam two papers maths and chemist 70% pass in chemistry. What is minimulated in both the subjects? A) 0% C) 40%	m percentage of students who could have	
17. B, the son of A was married to C, whose How D is related to A?		
A) Sister	B) Daughter-in-law	
C) Sister-in-law	D) Consinal Charles (M. C.	
10/2/2	so John wy cur. c	
5= 12 105	(25 8 mount C'	
1/49		

18.	Statements	:
-----	------------	---

I.	The farmers	nave decided against soll:
	agencies	nave decided against selling their Kharif crops to the Government
	agomotos.	clops to the Government
*	m -	

II. The Government has reduced the procurement price of Kharif crops starting from

A) Statement I is the cause and statement II is its effect

B) Statement II is the cause and statement I is its effect

C) Both the statements I and II are independent causes

D) Both the statements I and II are effects of independent causes

19. Indiscreet is related to imprudent in the same way as Indisposed is related to B) Crucial C) Clear

20. Rangaswamy Cup is associated with

A) Archery

B) Cricket

C) Football

D) Hockey

D) Reluctant

21. Who is the father of Geometry?

A) Aristotle

B) Euclid

C) Pythagoras

D) Kepler

22. Shivaji's war strategy used against the Mughals was

A) Alert Army

B) Political Supremacy

C) Large Army

D) Guerilla Warfare

23. Marginal utility, a consumer derives from a good, is

A) Change in his total utility as a result of adding one unit to his stock of a good

B) Utility derived from a particular good

C) Change in utility derived as a result of a change in the price of a good

D) Change in his total utility when he buys extra units of a good

24: Joint Military Exercise Nomadic Elephant 2017 is being held between India and

A) Vietnam

B) Mongolia

C) Sri Lanka

D) Thailand

25. $1014 \times 986 = ?$

A) 998804

B) 998814

C) 998904

D) 999804

CO.

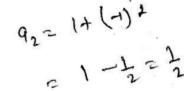
- 26. The solution of the differential equation $\frac{dy}{dx} = \frac{1-x}{y}$ represents a family of
 - A) circle with centre at (1,0)
 - B) circle with centre at (0, 0)
 - C) circle with centre at (-1,0)
 - D) straight line with slope -1

27. Suppose $\alpha = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2}$; $\beta = \lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{x^2 + y^2}$ then which of 42+x2-27=(2 the following statements is true?

- A) α exists but β does not exist
- C) a, B do not exist

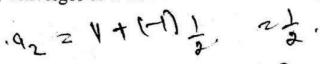
- B) α does not exist but β exists
- \sim D) both α , β exist

28. The set $U = \left\{ x \in \mathbb{R} : \sin x = \frac{1}{2} \right\}$ is


A) open

C) both open and closed

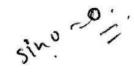
2 my (21-1) B) closed


- D) neither open nor closed
- 29. Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers defined as $a_1=1$ and for $n\geq 1$,

$$a_{n+1} = a_n + (-1)^n 2^{-n}$$
, $b_n = \frac{2a_{n+1} - a_n}{a_n}$. Then

- A) {a_n} converges to zero and {b_n} is a Cauchy sequence
- B) $\{a_n\}$ converges to zero and $\{b_n\}$ is a Cauchy sequence $\{a_n\}$
- C) {a_n} converges to zero and {b_n} is not a convergent sequence
- D) {a_n} converges to a non-zero number and {b_n} is not a convergent sequence

(CSIR NET, GATE & JAM Complete Study Materials and Solution Available. Visit www.pkalika.in)



- 30. The matrix equation AX = B has a unique non-zero solution if
 - A) A is singular
 - B) A is non-singular
 - C) A is non-singular and B is not a null matrix
 - D) A is non-singular and B is a null matrix
- 31. The sequence $\{(-1)^n\}_{n=1}^{\infty}$ is
 - A) bounded and convergent
- B) convergent and unbounded

C) bounded and divergent

- D) divergent and unbounded
- 32. If sequences of real numbers $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ are such that, $b_n = a_{2n}$
 - and $c_n = a_{2n+1}$; then $\{a_n\}_{n=1}^{\infty}$ is convergent implies
 - A) $\{b_n\}_{n=1}^{\infty}$ is convergent but $\{c_n\}_{n=1}^{\infty}$ need not be convergent
 - B) $\{c_n\}_{n=1}^{\infty}$ is convergent but $\{b_n\}_{n=1}^{\infty}$ need not be convergent
 - Shoth $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ are convergent
 - D) both $\{b_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=1}^{\infty}$ are divergent
- 33. Consider the statements
 - γ a. The series $\sum \sin \frac{1}{n}$ is convergent
 - b. The series $\frac{1.2}{3^2.4^2} + \frac{3.4}{5^2.6^2} + \frac{5.6}{7^2.8^2} + \dots$ is convergent.

Then

- A) both the statements (a) and (b) are true
- B) (a) is true and (b) is false
- C) (a) is false and (b) is true
- D) neither (a) nor (b) is true

-9-

- 4. The series $x = \frac{x^2}{2} + \frac{x^3}{3} = \frac{x^4}{4} + \dots$ is convergent for
 - A) all real values of x
 - B) |x| < 1 only
 - C) |x| < 1
 - D) -1 < x < 1
- 5. $\lim_{n\to\infty} \left(2^n + 3^n\right)$ is equal to
 - A) 2
 - B) 3
 - C) 5
 - D) 6

- - = n. . n <1.
 - my + my 2 my
- 36. The value of $\iiint xyzdxdydz$ over the domain bounded by x = 0, y = 0, z = 0, x + y + z = 1 is
 - A) $\frac{1}{360}$
 - C) $\frac{1}{720}$

- B) 360
- D) 720
- = || ory (1-x-4)2 dyda

my za zandy.

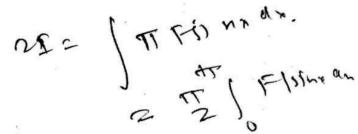
- 37. The value of the integral $\int_{-1}^{1} \frac{|x|}{x} dx$ is equal to
 - A) 2
 - $\frac{1}{2}$
- bridge of or
 - 34+3m3-24,Az
- 4 | m(1+2+42-2m-
- 2 22 + 24 + 42

(CSIR NET, GATE & JAM Complete Study Materials and Solution Available. Visit www.pkalika.in)

38. The integral $\int_0^{\pi} xF(\sin x)dx$ is equal to

A)
$$\frac{\pi}{4} \int_0^{\pi} F(\sin x) dx$$

B)
$$\frac{\pi}{2} \int_0^{\pi} F(\sin x) dx$$


C)
$$\pi \int_0^{\pi} F(\sin x) dx$$

D)
$$\int_0^{\pi} F(\sin x) dx$$

- IT SFSinn SF (Sinn) onda.

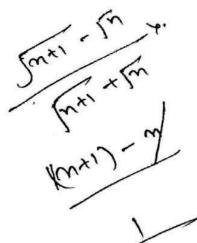
39. If G is a group and H is a subgroup of index 2 in G, then which of the following is a correct statement ?

- B) H is not a normal subgroup of G
- C) H is a subgroup of G
- D) None of these

- 40. If $a, b \in G$, where G is a group of order m, then order of ab and ba are
 - A) equal to m
 - B) same
 - C) unequal

D) not defined

- 41. Which amongst the following statements is not true?
 - A) A sequence cannot converge to more than one limit,
 - B) Every convergent sequence is bounded
 - C) Every bounded sequence is convergent
 - D) Limit of a convergent sequence is unique


42. If
$$u_n = \sqrt{n+1} - \sqrt{n}$$
 and $v_n = \sqrt{n^4 + 1} - n^2$, then

- A) $\sum_{n=1}^{\infty} u_n$ converges but $\sum_{n=1}^{\infty} v_n$ diverges
- B) $\sum_{n=1}^{\infty} u_n$ diverges but $\sum_{n=1}^{\infty} v_n$ converges
- C) $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ both converges
- D) $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ both diverges

43. The sequence
$$a_n = \frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(2n)^2}$$

- A) converges to 0 m^{*} B) converges to $\frac{1}{2}$ C) converges to $\frac{1}{4}$ D) does not converge
- 44. Let $a_n = \sin \frac{1}{n^2}$, n = 1, 2, ..., then
 - A) $\lim_{n\to\infty} a_n = 1$
 - B) $\sum_{n=1}^{\infty} a_n$ converges

 - D) $\sum_{n=1}^{\infty} a_n$ diverges
 - C) $\lim_{n\to\infty} \sup_{n\to\infty} a_n \neq \lim_{n\to\infty} \inf_{n\to\infty} a_n$
- 45. The derivative of a periodic function with period t is
 - A) a constant function
 - B) a periodic function with period t
 - C) a non-periodic function
 - D) none of the above

46. Let A and B be any $n \times n$ real matrices, then which of the following statements is true?

- A) rank(A + B) = rank(A) + rank(B)
- B) $rank(A + B) \le rank(A) + rank(B)$
- C) rank(A + B) = rank(A).rank(B)
- D) $rank(A + B) \ge rank(A) + rank(B)$

47. If $E = \{e^{2x}, e^{3x}\}, x \in R$ then the set E is

- A) linearly independent over R
 - B) linearly dependent over R
 - C) linearly independent over any interval (a, b), only when 0 does not belong to (a, b)
 - D) none of the above

48. Which one of the following statements is correct?

- A) There is no vector space of dimension 1
- B) Any three vectors of a vector space of dimension 3 are linearly independent
- C) There is one and only one basis of a vector space of finite dimension
- D) If a non zero vector space V is generated by a finite set S, then V can be generated by a linearly independent subset of S

49. If $V_1 = (1, 2, 0, 3, 0)$, $V_2 = (1, 2, -1, -1, 0)$, $V_3 = (0, 0, 1, 4, 0)$, $V_4 = (2, 4, 1, 0, 1)$ and $V_5 = (0, 0, 0, 0, 1)$, then the dimension of the linear span of $\{V_1, V_2, V_3, V_4, V_5\}$ is

A) 2

B) 3

C) 4

D) 5

50. The dimension of the vector space $V = \{A = (a_{ij})_{m \times n} : a_{ij} \in \mathbb{C}, a_{ij} = -a_{ji}\}$ is

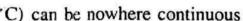
B) $n^2 - 1$

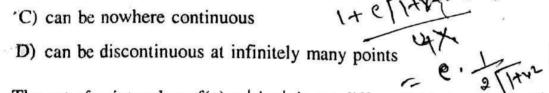
[34]

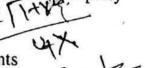
- 51. Using Rolle's theorem, the equation $a_0x^n + a_1x^{n-1} + ... + a_n = 0$ has at least one root between 0 and 1, if
 - A) $\frac{a_0}{n} + \frac{a_1}{n-1} + \dots + a_{n-1} = 0$
- B) $\frac{a_0}{n-1} + \frac{a_1}{n-2} + \dots + a_{n-2} = 0$

C) $\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + a_n = 0$

D) $na_0 + (n-1)a_1 + ... + a_{n-1} = 0$

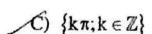

52. $\lim_{x\to 0} \frac{(1+x)^{\frac{1}{2}} - c + \frac{1}{2}ex}{c^2}$ is equal to


= 1 + 1 e


- A) $\frac{24}{11}$ e
- B) $\frac{11}{24}$ e
- C) $\frac{1}{11}e$ D) $\frac{2^{1}}{21}e$

- 53. A monotonic function
 - (A) is always continuous
 - B) is continuous only, if it satisfies intermediate value property

 (C) can be nowhere continuous



2 Hmg 2 1. (-1) - 11+232.

- 54. The set of points where $f(x) = |\sin x|$ is not differentiable is
 - A) empty

B) {0}

- D) $\left\{\frac{k\pi}{2}; k \in \mathbb{Z}\right\}$
- is. Let $P_n(x)$ be a Taylor's polynomial of degree $n \ge 0$ for the function e^x about = 0. Then, the error in this approximation is
 - (A) $\frac{x^n}{n!}e^t$ for some t, 0 < t < x
- B) $\frac{x^n}{(n+1)!}e^t$ for some t, 0 < t < x
- C) $\frac{x^{n+1}}{n!}e^t$ for some t, 0 < t < x
- D) $\frac{x^{n+1}}{(n+1)!}e^t$ for some t, 0 < t < x

56. Consider the matrix
$$\mathbf{M} = \begin{bmatrix} 0 & 1 & 2 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$
 then

- A) M has no real eigen values
- 8) All real eigen values of M are positive
- C) All real eigen values of M are negative

D) 1

59. Following system of linear equations

$$x + 4y + 3z = 0$$

$$x + 3y + 4z = 0$$

$$x + 2y + 5z = 0$$
 does have

- A) no solution
- B) infinitely many solutions
- D) exactly one solution

k(-4+2)-1(4+2), +2(141).

C) more than one but finitely many solutions

(CSIR NET, GATE & JAM Complete Study Materials and Solution Available. Visit www.pkalika.in)

- 60. Let A be a 3×3 complex matrix, whose characteristic polynomial is given by $f(t) = t^3 + c_2 t^2 + c_1 t + c_0$, then
 - A) $det(A) = c_2$

B) $det(A) = c_0$

C) $det(A) = -c_2$

 \not D) det(A) = $-c_0$

to 2.3x2-3

- 61. For the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = x^3 + y^3 3x 12y + 20$, which of the following is true?
 - A) f has maximum at (1,2)
 - B) f has minimum at (-1, -2)
- C) I has maximum at (-1, -2)C) I has maximum at (1, 2) and minimum at (-1, -2)D) The saddle points of f are (-1, 2) and (1, -2) $\sqrt{1+2\tan x(\tan x + \sec x)} \text{ dx is equal to}$ A) $-\log(1+\sin x) + c$ B) $\log(1-\sin x) + c$ C) $-\log(1-\sin x) + c$ C) $\log(1+\sin x) + c$ Full family at (-1, -2) 62. $\int \sqrt{1+2\tan x(\tan x+\sec x)} dx$ is equal to $A) - \log(1 + \sin x) + c$
 - B) $\log(1 \sin x) + c$
 - C) $-\log(1-\sin x) + c$

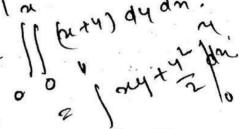
 - D) $\log (1 + \sin x) + c$

- 63. The value of $\int_0^\infty \log \left(x + \frac{1}{x}\right) \frac{dx}{1 + x^2}$ is
 - A) 0
 - C) log 2
 - 14114
- 64. If $I_n = \int_0^{\pi/4} \tan^n x \, dx$ then
 - A) $I_n I_{n-2} = \frac{1}{n-1}$
 - C) $I_n + I_{n-2} = \frac{1}{n}$

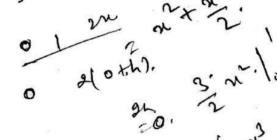
- =] (+ of kection) + atomosern
 - B) 00
 - D) $\pi \log 2$
- 1-1 = NP0 POK.57.
 - B) $I_n + I_{n+2} = \frac{1}{n-1}$
 - D) $I_n I_{n-2} = \frac{1}{n-2}$

65. If $E = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le x\}$, then the value of $\iint (x+y)dx dy$ is equal to

A) -1


C) 1

D) $\frac{1}{2}$


66. If f(x) = (x + |x|) |x|, for all $x \in \mathbb{R}$, then which of the following is incorrect?

- A) f is continuous
- B) f is not differentiable for some x
- C) f' is continuous
- b) f' is differentiable

67. The Maclaurin's expansion of tan'x in powers of x is valid in the interval

- A) $(-\infty, \infty)$
- B) $\left(-\frac{3\pi}{2}, \frac{3\pi}{2}\right)$
- C) $(-\pi, \pi)$
- D) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

68. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ of two variables defined by

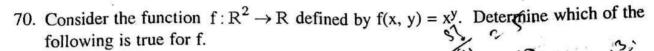
$$f(x,y) = \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0$$

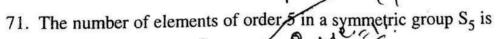
$$0, x^2 + y^2 = 0$$

Determine which one of the following facts about f is true.

A) f is continuous at (0, 0)

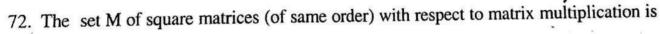
- B) f has removable discontinuity at (0, 0)
- C) f is not differentiable at (0, 0)
- D) none of the above


CO


69.	If $f: \mathbb{R}^2$	→R	be defined by $f(x, y) = x^2 + y^2$ if x and y are rational
			0 otherwise

then which of the following statements is true?

- A) f is not continuous at (0, 0)
- B) f is continuous at (0, 0) but not differentiable at (0, 0)
- C) f is differentiable only at (0, 0)
- D) f is differentiable everywhere



- A) $f_x(a, 0) = 0$ for any constant a
- B) $f_v(e, 0) = 0$
- C) $f_{xy}(1, 0) = 0$ D) $f_{yx}(1, 1) = 1$

- A) 5
- C) 24

- - D) 12

A) group

B) semi-group

C) monoid

D) rank


73. The number of generators in a cyclic group of order 10 are

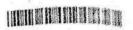
A) 1

B) 2

C) 3

D) 4




A) 3

B) 4

C) 6

D) 9

- 75. If U is a 3×3 complex Hermitian matrix, which is unitary, then the distinct eigen values of U are
 - A) i, -i

 \sim C) 1, -1

- D) $\frac{1+i}{2}, \frac{1-i}{2}$
- 76. If E is a connected subset of R with atleast two elements, then the number of elements in E is
 - A) exactly two

B) more than two but finite

C) countably infinite

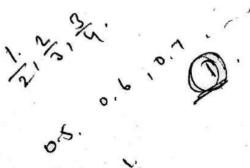
- D) uncountable
- 77. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by f(x, y) = 1 if xy = 02 otherwise.

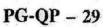
If $S = \{(x, y) : f \text{ is continuous at the point } (x, y)\}$, then

A) S is open

B) $S = \varphi$

C) S is connected


- D) S is closed
- 78. Let Q be the set of rational numbers and E be the set of all rationals p, such that $2 < p^2 < 3$, then E is
 - A) closed and bounded in O
- B) closed and unbounded in Q


C) not compact in Q

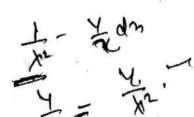
- D) compact in O
- 79. Consider the following subsets of \mathbb{R}

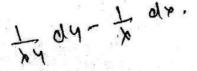
$$E = \left\{ \frac{n}{n+1} : n \in \mathbb{N} \right\}, F = \left\{ \frac{n}{x+1} : 0 \le x \le 1 \right\}, \text{ then}$$

- A) Both E and F are closed
- B) E is closed and F is not closed
- C) E is not closed and F is closed
- D) Neither E nor F is closed

- 80. If G is a cyclic group of order 8, then the order of the group of automorphisms of G is
 - A) 2
 - C) 6

- 81. $\int_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx$ is equal to
 - A) 0
 - C) π/4


- 82. The entire length of the curve whose equation is $x^{2/3} + y^{2/3} = r^{2/3}$ is equal to
 - A) $\frac{3}{2}$ r
 - C) 6r


- D) none of these
- 83. The value of $\int_0^\infty \int_{1/y}^\infty x^4 e^{-x^3 y} dx dy$ is equal to
 - A) 1/4
 - C) 1/2

- 1 x 24 x x x
- 84. Which of the following is not an integrating factor of the differential equation

dy - y dx = 0 ?

85. The orthogonal trajectory to the family of circles $x^2 + y^2 = 2cx$ (c arbitrary) is described by the use described by the differential equation

A)
$$(x^2 + y^2)y' = 2xy$$

B)
$$(x^2 - y^2)y' = 2xy$$

C)
$$(y^2 - x^2)y' = xy$$

$$x^{2}+y^{2}=2\left(x-y\frac{dx}{dyi}\right).x.$$

D)
$$(y^2 - x^2)y' = 2xy$$

$$= \frac{\chi^2 + y^2}{\chi} = 2\left(\chi - \frac{y}{y}\right).$$
directional derivative for the surface $\chi^2 + \chi y + yz = 0$

 $= \frac{\chi^2 + y^2}{\chi} = 2 \left(\chi - \frac{y}{y} \right).$ 86. The maximum magnitude of the directional derivative for the surface $\chi^2 + \chi y + yz = 9$ at the point (1, 2, 3) is along the direction

A)
$$i + j + k$$

$$\frac{\chi}{\chi} + \frac{1}{\chi} - \frac{2}{\chi} = -\frac{2}{\chi}$$

B)
$$2i + 2j + k$$

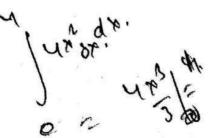
$$\mathcal{E}$$
) i +2j + 3k

D)
$$i - 2j + 3k$$

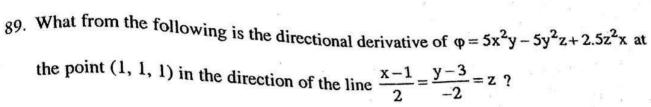
87. If
$$\vec{F}$$
 is such that $\nabla \times \vec{F} = 0$, then \vec{F} is called

led 1+3+in 7. 42-x2) 4'= 2m,

- A) rotational
- B) irrotational
- C) solenoidal
- D) rotational and solenoidal


4 man 4 (2+2+1.) = 20. 4 (2+2+3. = 6.224.

88. From the following, what is the value of $\int \vec{F} \cdot d\vec{r}$, where $\vec{F} = 2x^2y\hat{i} + 3xy\hat{j}$ and


C is $y = 4x^2$ in the plane from (0,0) to (1, 4)?

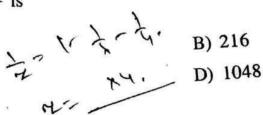
A)
$$\frac{104}{9}$$

B)
$$\frac{104}{7}$$

D)
$$\frac{104}{5}$$
 $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{5}{5}$

A)
$$\frac{11}{3}$$

B)
$$\frac{11}{2}$$

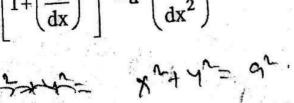

B)
$$\frac{11}{2}$$

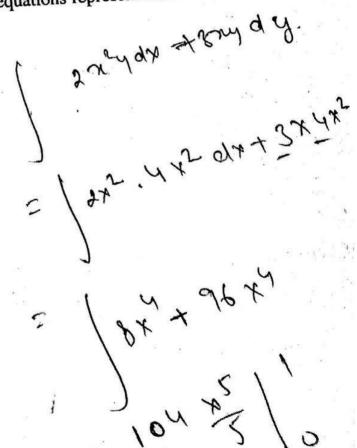
C)
$$11\frac{2}{3}$$
 \checkmark

D)
$$\frac{2}{3}$$

90. If x, y and z are positive real numbers, then the minimum value of $x^2 + 8y^2 + 27z^2$, where $\frac{1}{x} + \frac{1}{v} + \frac{1}{z} = 1$ is

91. Which one of the following differential equations represent all circles with radius a?


A)
$$1 + \left(\frac{dy}{dx}\right)^2 + \sqrt{a^2 + x^2} \frac{d^2y}{dx^2} = 0$$


A)
$$1 + \left(\frac{dy}{dx}\right)^2 + \sqrt{a^2 + x^2} \frac{d^2y}{dx^2} = 0$$

B)
$$1 + \left(\frac{dy}{dx}\right)^2 + \sqrt{a^2 + y^2} \frac{d^2y}{dx^2} = 0$$

C)
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 + a^2 \left(\frac{d^2y}{dx^2}\right)^2 = 0$$

D)
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 - a^2 \left(\frac{d^2y}{dx^2}\right)^2 = 0$$

(CSIR NET, GATE & JAM Complete Study Materials and Solution Available. Visit www.pkalika.in)

- 92. The solution y(x) of the differential equation $(D^2 + 4D + 4)y = 0$ satisfying the B) $(16x + 4)e^{-2x}$ D) $4e^{-2x} + 16x4e^{2x}$ conditions y(0) = 4, y'(0) = 8 is
 - A) $4e^{2x}$
- $e^{-3x} + 16x$

- 93. An integrating factor for the differential equation $(\cos y \sin 2x)dx + (\cos^2 y \cos^2 x)dy = 0$ is
 - A) see²y + secytany

C) $\frac{1}{\sec^2 v + \sec v \tan v}$

- D) $\frac{1}{\tan^2 y + \text{secytamy}}$ $\frac{1}{\tan^2 y + \text{secytamy}}$ 94. If c is an arbitrary constant, then the general solution of the differential equation 4=(4+c2)e

41-

- $\frac{dy}{dx}$ tan x tan y = cos x secy is
- A) $2\sin y = (x + c \sin x \cos x)\sec x$
- C) secy = (x + c)cosx

- B) cosy = (x + c)sinxD) siny = (x + c)cosx
- 95. The maximum value of f(x, y, z) = xyz along all points lying on the intersection of the planes x + y + z = 40 and z = x + y is
 - A) 4000

- C) 2000
- 3 m (1) 3000 (1) 2 (1) 2 (1) . The color of the c
- 96. The differential equation $\frac{dy}{dx} = k(a-y)(b-y)$ when solved with the condition y(0) = 0,
 - vields the result
 - A) $\frac{c(a-y)}{a(b-y)} = e^{(a-b)kx}$
 - B) $\frac{b(a-x)}{a(b-x)} e^{(a-b)ky}$

 - C) $\frac{a(b-y)}{b(a-y)} = e^{(a-b)kx}$
 - D) xy = ke

CO

(a-4)(6-4) = kdx. (ats) at

5-9:= A(b-8) + 6(2-8)=1

A. + b. : -

- (CSIR NET, GATE & JAM Complete Study Materials and Solution Available. Visit www.pkalika.in)

- 97. Solving by variation of parameter the differential equation $y'' 2y' + y = e^x \log_x x$
 - A) e^{2x}
 - C) e^{-2x}

- B) 2
- D) e
- 98. The differential equation 2y dx (3y 2x)dy = 0
 - A) exact and homogeneous but not linear
 - B) homogeneous and linear but not exact
 - C) exact and linear but not homogeneous
 - D) exact, homogeneous and linear

- 99. The differential equation $(\alpha xy^3 + y\cos x)dx + (x^2y^2 + \beta\sin x)dy = 0$ is exact for the values of α and β such that
 - A) $\alpha = \frac{3}{2}$, $\beta = 1$

3 x x y 2 + w s x = 2x y 2 + p w s x.

. B) $\alpha = 1, \beta = \frac{3}{2}$

3x-5) x45 + (1-10) 107 x-0

D) $\alpha = 1, \beta = \frac{2}{3}$ $\beta = \frac{2}{3}$ The particular solution of the equation y' = 2

100. The particular solution of the equation y'six = stogyosatisfying the initial condition

 $y(\pi/2) = e$, is

- A) $e^{\tan(x/2)}$
- B) $e^{\cot(x/2)}$
- C) $\log \tan (x/2)$
- D) $\log \cot (x/2)$

Gt by (dy)= 1 dt. +c.

Answer Key

CUCET 2016 MSc Mathematics Entrance Exam

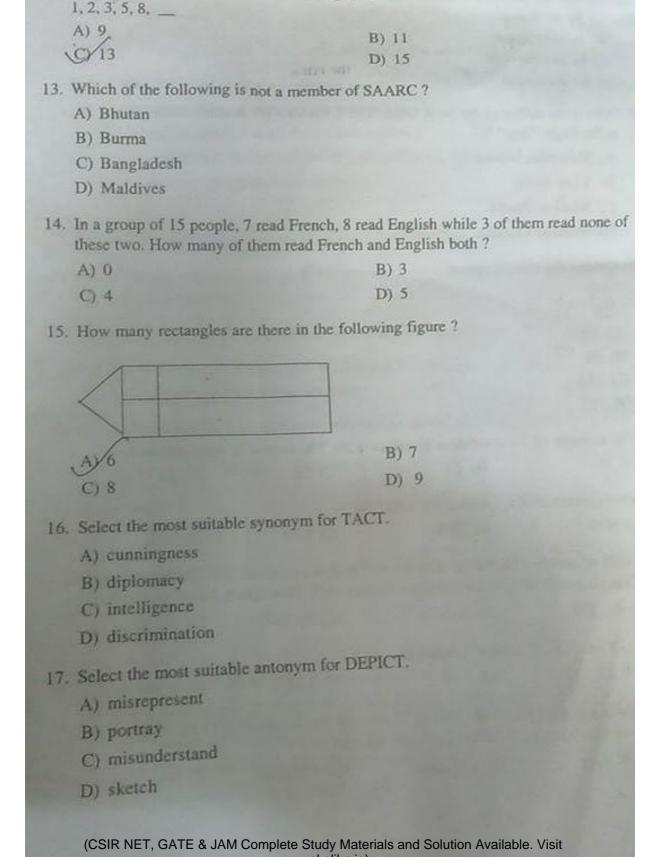
Q.No.	Ans	Q.No.	Ans	Q.No.	Ans
1	В	21	В	41	С
2	C	22	D	42	В
3	В	23	A	43	A
4	A	24	В	44	В
5	C	25	D	45	В
6	C	26	A	46	В
7	В	27	A	47	C
8	A	28	В	48	D
9	D	29	В	49	В
10	C	30	C	50	C
11	D	31	C	51	C
12	D	32	C	52	*
13	В	33	C	53	В
14	C	34	D	54	C
15	A	35	*	55	A
16	A	36	C	56	D
17	В	37	D	57	A
18	В	38	В	58	C
19	D	39	A	59	В
20	D	40	В	60	D

Q.No.	Ans	Q.No.	Ans
61	D	81	С
62	C	82	C
63	D	83	C
64	*	84	D
65	D	85	В
66	D	86	В
67	D	87	В
68	C	88	D
69	В	89	C
70	A or D	90	В
71	С	91	D
72	B or C	92	В
73	D	93	A
74	C	94	D
75	С	95	C
76	D	96	A
77	A	97	A
78	D	98	D
79	D	99	C
80	В	100	A

CUCET-2016 MSc Mathematics

PG-QP - 27	[48	14	THEN IN THE OWN OF STREET
CUCET MSc Math 2016 0	Que paper PA	RT-A	
Questions 1-10: Fill in the option from those provide	e blanks with the	most grammatically corr	ect and meaningful
1. The culprit denied h	aving	the crime. B) committing	
A) commit C) committed		D) had committed	
 A horse is kept in a A) kennel 		C) yard	D) stable
3. I have been living h	ere the	e last two years.	
A since	B) about	C) for	D) over
4. Can I stay	_ the week end ?		
A until	B) by	C) to	D) along
5. I hardly	hear what you ar	re saying.	
	B) don't	C) can	D) do
6 do you	think you are, an	y way ?	
A) How	B) Whom	C) Why	D) Who
7. I think he did	down and	hurt himself.	
A) fell	B) fall	C) felt	D) fallen
8. Much \$	ince he left the t	own.	
A) had happen		B) was happe	
had happened		D) was happe	en
9. I am sure he is not	telling the truth	, he has to l	nis friends.
A) lyed	By lied	C) neyed	D) lying
10 money	is better than n	one.	D) Most
,A) Little	B) A little	C) The little	D) Hose
	tota answer for	the following:	

11. Choose the appropriate answer for the following


Roentgen: X-Rays:: Becquerel:?

A) Uranium

B) Radioactivity

D) Superconductivity

C) Fission (CSIR NET, GATE & JAM Complete Study Materials and Solution Available. Visit

12. Which number will come in the blank space?

- 18. Identify the meaning of idiom "Be in two minds". A) be burdened B) be indifferent C) be mischievous D) be undecided 19. Who is the author of the book titled "The Z Factor: My Journey as the Wrong Man at the Right Time"? A) Mahendra Verma B) Vijay Joshi C) Narayan Pandit D) Subhash Chandra 20. Choose the correct option I-3, 22, ,29, A) 12 # + - 2 # ~ 2 B) 58 C) 122 D) 588 21. The average of 7 consecutive numbers is 20. The largest of these numbers is A) 20 B) 22 C) 23 D) 24 22. What percent of Rs. 2,650 is Rs. 1,987.50 ? A) 60% B) 75% C) 80% D) 90% 23. A sells an article which costs him Rs. 400 to B at a profit of 20%. B then sells it to C, making a profit of 10% on the price he paid to A. How much does C pay to B? A) Rs. 472 B) Rs. 476 C) Rs. 528 D) Rs. 532
- can do it in 90 days. In what time can A alone do it? A) 80 days B) 100 days C) 120 days D) 150 days

25. A and B can do a piece of work in 72 days; B and C can do it in 120 days; A and C

A) L12

24. If 0.75: x::5:8, then x is equal to

B) 1.20

C) 1.25

D) 1.30

Foo x two con-

CUCET MSc Math 2016 Que paper

PART-B

26. Consider the set $S = \left\{ x \in \mathbb{R} : \frac{2x+1}{x+2} < 1 \right\}$, where R is the set of reals. Determine which one of the following statements about S is correct.

- A) S is bounded below but not above and infS = -2
- B) S is bounded above but not below and supS = 1
- C) S is bounded both below and above with $\inf S = -2$, $\sup S = 1$
- D) S is neither bounded below nor above
- 27. Consider the set $S = \left\{ \frac{mn}{1+m+n} : m, n \text{ are natural numbers} \right\}$. Then determine which one of the following statements is correct.

A) S is a bounded set

- B) S is bounded below with infS = $\frac{1}{3}$ but not bounded above
- C) S is bounded above with supS = 1 but not below
- D) S is neither bounded below nor above
- 28. Let p, q be two reals such that p > q > 0. Define the sequence $\{x_n\}$, where $x_1 = p + q$ and $x_n = x_1 - \frac{pq}{x_n}$ for $n \ge 2$. Then for all n, x_n is equal to one of the following and determine it.

A)
$$x_n = \frac{p^{n+1} - q^{n+1}}{p^n - q^n}$$

B)
$$x_n = \frac{p^{n+1} + q^{n+1}}{p^n + q^n}$$

$$C) x_n = \frac{(pq)^n}{p^n + q^n}$$

$$D) x_n = \frac{(pq)^n}{p^n - q^n}$$

- 29. Which one of the following statements is wrong?
 - A) Every convergent sequence of reals is necessarily bounded
 - B) Every sequence of reals has a monotone subsequence
 - C) Every monotone increasing sequence which is bounded above is convergent
 - D) Every sequence which is bounded above has a convergent subsequence

- 30. The sequence $\left\{\frac{0}{2^n} + 1\right\}$
 - A) Is bounded but not convergent
 - (2) Is convergent and converges to 1
- B) Is convergent and converges to 0
- D) Is monotone increasing
- 31. The minimum value of the sum $\sum_{k=1}^{n} a_k^2$ of reals satisfying $\sum_{k=1}^{n} a_k = 1$ is
 - A) /Jn
 - 0 /2

- B) $\frac{1}{n}$ $S = a_1^2 + ... + a_n$ D) $\frac{1}{n}$, $a_1 + a_2 + ... + a_n$
- 32. Consider the sequences $\{a_n\}$ and $\{b_n\}$, where $a_n = \left(1 + \frac{1}{n}\right)^n$ and $b_n = \left(1 + \frac{1}{n}\right)^{n+1}$ for

all n \(N. Then.

- A) both sequences are monotone increasing
- Jb) both sequences are monotone decreasing
- () one of these two sequences is monotone increasing and the other one is monoton decreasing
- D) both the sequences are unbounded
- 33. The series $\sum_{n=1}^{\infty} \frac{n}{3.5.7..(2n+1)}$ converges to
 - A) 1/2
- B) 1/3
- C) 1/4
- D) 1/5
- 34. The series $\sum_{k=2}^{\infty} \frac{1}{k(\log k)^{\alpha}}$ where α is a real no. and $\log k = \log_e k$
 - A) Converges for all α
 - B) Converges only for $\alpha < 0$
 - C) Converges only for all α satisfying $0 < \alpha < 1$
 - \sqrt{D}) Converges only for all $\alpha > 1$

A+

35. The
$$\lim_{x\to 0} \frac{\log(\cos x)}{\sin^2 x}$$

At does not exist

- B) exists and its value is $-\frac{1}{2}$
- C) exists and its value is 0
- D) exists and its value is $\frac{1}{2}$

36. Consider the function
$$f(x) = \frac{1}{1 + e^{x/x}}$$
 for $x \neq 0$. Then

- A) Left hand limit $\lim_{x\to 0^+} f(x)$ at x = 0 exists but the right hand limit $\lim_{x\to 0^+} f(x)$ at x = 0 does not exist
- B) $\lim_{x\to 0+} f(x)$ at x = 0 exists but $\lim_{x\to 0-} f(x)$ does not exist
- C) Both $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^+} f(x)$ at x=0 exist and they are equal
- Dy Both $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^+} f(x)$ at x=0 exist and they are not equal

37. The value of
$$\lim_{x\to\infty} x(\log(1+x/2) - \log(x/2))$$
 is

A) 2

B) 1

250

D) - 1

38. Define the function
$$f: R \to R$$
 by $f(x) = \begin{cases} \sin |x|, & \text{if } x \text{ is rational} \\ 0, & \text{otherwise} \end{cases}$

Then f is continuous

- A) at all rational points
- B) at all irrational points

C) at all $x = k\pi$, where k is any integer

D) at all $x \neq k\pi$, where k is any integer

39. Let f and $g[a, b] \rightarrow R$ be two continuous functions such that f(a) < g(a) and f(b) > g(b). Then

- A) there is a $c \in (a, b)$ such that f(c) + g(c) = 0
- B) there is a $c \in (a, b)$ such that f(c) g(c) = 0
- C) for all $x \in (a, b)$, f(x) = g(x)
- D) for all $x \in (a, b)$, $f(x) \neq g(x)$

40. Which of the following functions is uniformly continuous on [0, ∞]?

$$\times$$
 A) $f(x) = x \sin x$

B)
$$g(x) = \sin x^2$$

$$C)'h(x) = e^x$$

D)
$$k(x) = \sin(\sin x)$$

电影面形圆形面多音

41. Let $f:(1,\infty)\to \mathbb{R}$ be a function defined by $f(x)=\log_x 2$. Then the derivative of f is

A)
$$\frac{1}{x \log x} f(x)$$

$$B) - \frac{1}{x \log x} f(x)$$

C)
$$\frac{1}{\log x} f(x)$$

D)
$$-\frac{1}{\log x}f(x)$$

42. Let $f: R \to R$ be a function defined by $f(x) = \begin{cases} ax + b, & \text{if } x \le 1 \\ ax^2 + c, & \text{if } 1 < x \le 2 \end{cases}$ where a, b, c, d are $\frac{dx^2 + 1}{x}, & \text{if } x > 2 \end{cases}$

constants. The values of a, b, c, d so that f is differentiable on R, are

A)
$$a = 0$$
, $b = c = 1$, $d = \frac{1}{4}$

B)
$$a = 0$$
, $b = c = -1$, $d = \frac{1}{2}$

C)
$$a = 1$$
, $b = c = -1$, $d = \frac{1}{4}$

D)
$$a = -1$$
, $b = c = 0$, $d = \frac{1}{2}$

A+

43. Let
$$g:(0,\infty)\to \mathbb{R}$$
 be a differentiable function each that $g'(x)=\frac{1}{x}$ for all x , then f is differentiable and $f'(x)$ is equal to

- A) $6x (g(x^2))^2$
- B) $6x^2(g(x^2))^2$
- C) $6(g(x^2))^2/x$
- D) $6(g(x^2))^2/x^2$
- 44. Define the function f on R by $f(x) = \sum_{i=1}^{n} (a_i x)^2$ where $a_1, a_2, ...a_n$ are real constants.

Then I has a relative extremum at the point

A)
$$x = \sum_{i=1}^{n} a_i$$

B)
$$x = \frac{1}{n} \sum_{i=1}^{n} a_i$$

C)
$$x = \sum_{i=1}^{n} a_i^2$$

$$D) x = \frac{1}{n} \sum_{i=1}^{n} a_i^2$$

45. Let
$$f:(-1,1) \to \mathbb{R}$$
 be a function defined by $f(x) = \begin{cases} 2x^4 + x^4 \sin \frac{3}{x}, & \text{for } x \neq 0 \\ 0, & \text{for } x = 0 \end{cases}$

Then

- A) f(x) has no point of extremum in (-1, 1)
- B) f(x) is a decreasing function
- C) f(x) is an increasing function
- D) f(x) is neither a decreasing nor an increasing function in (-1, 1)
- 46. The value of the integral $\int_0^{\pi/2} \frac{\sin^8 x}{\sin^8 x + \cos^8 x} dx$, where n is a natural number is
 - A) n
 - B) $\frac{\pi}{2}$
 - C) 7/3
 - JD 7/4

47. Let f be a positive monotone decreasing function on [1, ∞]. Then the sequence $\{a_n\}$,

-12-

where
$$a_n = \sum\limits_{k=1}^n f(k) - \int_1^n \ f(x) \, dx$$
 for $n \in \mathbb{N}$

- A) is not bounded
- B) is not a monotone sequence.
- C) is convergent
- D) is oscillatory

48. Let f be a continuously differentiable function defined on an interval [a, b] such that f(a) = f(b) = 0 and $\int_a^b f^2(x) dx = 1$. Then the value of $\int_a^b x \ f(x) f'(x) dx$ is

- A) $-\frac{1}{2}$
- B) 0
- 0 1/2
- D) 1

49. The improper integral $\int_1^\infty \frac{dx}{x^n}$

- A) converges if n < 1
- B) converges if n =1
- C) converges if n > 1
- D) converges for all values of n

50. The improper integral $\int_0^\infty e^{-sy} \sin x dx$, where y > 0 satisfies which one of the following ?

- A) does not converge for some y > 0
- B) converges for all y > 0 but not uniformly on $[a, \infty)$ for any a > 0
- C) converges uniformly on (0, co)
- D) converges uniformly on [a, ∞), where a > 0

A

51. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ of two variables defined by

$$f(x,y) = \begin{cases} 0, & \text{if } (x,y) = (0,0) \\ \frac{xy^2}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \end{cases}$$

Determine which one of the following facts about f is not true.

- A) f is differentiable at (0, 0)
- B) f is continuous at (0, 0)
- C) f has directional derivative at (0, 0) in the direction of any vector $\mathbf{u} = (\mathbf{a}, \mathbf{b}) \neq (0, 0)$
- D) partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial x}$ at (0, 0) exist
- 52. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ and $g: \mathbb{R}^2 \to \mathbb{R}$ be two functions given by $f(x, y) = (x^2 + y^2, x^2 y^2)$ and g(x, y) = 2xy. Define $h: \mathbb{R}^2 \to \mathbb{R}$ by $h = g_0 f$. Then h is differentiable at each $(x, y) \in \mathbb{R}^2$ and it is a 1×2 matrix given by
 - A) $h'(x, y) = (2x^3 2y^3)$
 - B) $h'(x, y) = (8x^3 8y^3)$
 - C) $h'(x, y) = (-8x^3 8y^3)$
 - D) $h'(x, y) = (4x^3 4y^3)$
- 53. The function $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(x, y) = xy
 - A) has a critical point at (0, 0) which is a relative minimum
 - B) has a critical point at (0, 0) which is a relative maximum
 - C) has a critical point at (0, 0) which is a saddle point
 - D) has no critical point
- 54. The area of the largest rectangle that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 - A) ab/2
- B) ab

- C) πab/2
- D) nab

55. The value of the integral $\int_0^\infty \frac{dx}{x+y}$ where C is the curve whose parametric representation is $x = at^2$, y = 2at, $0 \le t \le 2$, is

A) log 2

B) $\frac{1}{2} \log 2$

C) $\frac{1}{3} \log 2$

D) 2 log 2

56. The value of the integral $\iint_X x^2 y^2 dxdy$, where S is the region $x \ge 0$, $y \ge 0$ and

- $x^2 + y^2 \le 1$, is
- A) 7/96
- C) 7/24

- B) 7/48 .
 - D) 7/12

57. The value of the integral $\iiint_D (a^2b^2c^2 - b^2c^2x^2 - c^2a^2y^2 - a^2b^2z^2)^{1/2} dxdydz$ where D is the region $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$, is

- A) a²b²c²π²
- B) $\frac{1}{4} a^2 b^2 c^2 \pi^2$
- C) $\frac{1}{3} a^2 b^2 c^2 \pi^2$
- D) $\frac{1}{2} a^2 b^2 c^2 \pi^2$

58. The gradient vector ∇f of $f(x, y, z) = e^{xy} - x\cos(yz^2)$ at (1, 0, 0) is

A) i+j

B) i-j

 $C) - \vec{i} + \vec{j}$

D) $\left(-\vec{i} + \vec{j} + \vec{k}\right)$

Ax

[59]

59. A unit normal to the surface sinxy = e^z at $(1, \frac{\pi}{2}, 0)$ is

A)
$$\left(\vec{i} + \vec{j} + \vec{k}\right) / \sqrt{3}$$

B) i

D) k

60. The equation of the tangent plane to the surface $3xy + z^2 = 4$ at (1, 1, 1) is

A)
$$3x + 3y + 2z = 8$$

B) 3x - 3y + 2z = 8

C)
$$3x + 3y - 2z = 8$$

D) -3x + 3y + 2z = 8

61. Suppose y is a differentiable function of x satisfying $e^{x-y} + x^2 - y = 1$. Then the value of $\frac{dy}{dx}$ at (0,0) is

A) 0

B) 1/2

C) 1/3

D) 1/4

62. The divergence of the vector field given by $\vec{F} = x^2y \vec{i} + z \vec{j} + xyz \vec{k}$ is

A) xy

- B) 2xy
- W 3xy

D) 4xy

63. The curl of the vector field $\vec{F}(x, y, z) = xy \vec{i} - \sin z \vec{j} + \vec{k}$ is

A) $\cos z i + x j$

B) coszi+xk

C) coszj+xk

D) coszi-xk

64. Which one of the following vector fields is not a gradient vector field?

A)
$$\vec{F}(x, y, z) = (y + z) \vec{i} + (z + x) \vec{j} + (x + y) \vec{k}$$

- B) $\vec{F}(x, y, z) = y \vec{i} x \vec{j}$
- C) $\vec{F}(x, y, z) = 2xy^2 \vec{i} + 2(x^2 + z^2) y \vec{j} + 2y^2 z \vec{k}$
- D) $\vec{F}(x, y, z) = \frac{y}{x^2 + y^2} \vec{i} \frac{x}{x^2 + y^2} \vec{j}$, where $(x, y) \neq (0, 0)$

65. Let f(x, y, z) and g(x, y, z) be two function defined on R² having second order partial derivatives with respect to x, y, z. Determine which one of the following fact about the Laplacian operator ∇² is true.

A)
$$\nabla^2(fg) = (\nabla^2 f)(\nabla^2 g)$$

B)
$$\nabla^2(fg) = g\nabla^2 f + f \nabla^2 g$$

C)
$$\nabla^{a}(fg) = g\nabla^{a}f + f\nabla^{a}g + \nabla f \cdot \nabla g$$

D)
$$\nabla^{\delta}(fg) = g\nabla^{\delta}f + f \nabla^{\delta}g + 2(\nabla f \cdot \nabla g)$$

66. The initial value problem $\frac{dy}{dx} = \sqrt{|y|}$, y(0) = 0 has

A) no non-trivial solution

B) only trivial solution

- D) more than two solutions
- 67. The primitive of the differential equation $(2x \sin h \frac{1}{x} + 3y \cos h \frac{1}{x}) dx 3x \cos h \frac{1}{x} dy = 0$ is given by

A)
$$x^2 = K \sinh^3 \frac{y}{x}$$

B)
$$x^2 = K \sinh^2 \frac{y}{x}$$

C)
$$x^2 = K \cosh^3 \frac{y}{x}$$

D)
$$x^2 = K \cosh^2 \frac{y}{x}$$

Where K is an arbitrary constant.

68. An integrating factor of the differential equation $y(2xy + 1) dx + x (1 + 2xy - x^3y^3) dy = 0$ is

A)
$$\frac{1}{x^3y^5}$$

$$\int \frac{1}{x^3 y^3}$$

B)
$$\frac{1}{x^4y^4}$$

$$\mathcal{P}) \frac{1}{x^2 y^2}$$

69. The primitive of the differential equation
$$6y^2 \left(\frac{dy}{dx}\right)^2 + 3x \frac{dy}{dx} - y = 0$$
 is given by

A)
$$y^3 = Kx^2 + \frac{1}{3}K^2$$

B)
$$y^3 = Kx^2 + \frac{2}{3}K^2$$

C)
$$y^3 = Kx^3 + \frac{1}{3}K^2$$

D)
$$y^3 = Kx + \frac{2}{3}K^2$$

Where K is an arbitrary constant.

Given below four sets {f₁, f₂, f₃} of functions defined on R. Determine which set is linearly dependent.

A)
$$\{f_1(x) = x^2, f_2(x) = x^4, f_3(x) = x^{-2}\}$$

B)
$$\{f_1(x) = x, f_2(x) = x + 1, f_3(x) = x + 2\}$$

C)
$$\{f_1(x) = \cos x, f_2(x) = \sin x, f_3(x) = 1\}$$

D)
$$\{f_1(x) = e^x, f_2(x) = e^{-x}, f_3(x) = 1\}$$

71. The general solution of the differential equation $x^2y'' + xy' - y = (x^3 + 3x^2)e^x$ is

A)
$$y = C_1 x + C_2 x^2 + xe^x$$

B)
$$y = \frac{C_1}{x} + C_2 x + e^x$$

$$(x) y = \frac{C_1}{x} + C_2 x + x e^x$$

D)
$$y = \frac{C_1}{x} + \frac{C_2}{x^2} + xe^x$$

Where C1, C2 are arbitrary constants.

72. Let V be the vector space of all functions from the interval [-1, 1] into R. Determine which one of the following subsets of V is not a subspace of V.

A)
$$V_1 = \{ f \in V : f(x^2) = f(x)^2 \text{ for all } x \in [-1, 1] \}$$

B)
$$V_2 = \{f \in V : f(x) + f(-x) = 0 \text{ for all } x \in [-1, 1]\}$$

C)
$$V_4 = \{f \in V : f(0) = f(1)\}$$

D)
$$V_4 = \{ f \in V : f \text{ is a continuous function} \}$$

 Determine which one of the following sets of vectors from R³ does not form a basis for R³.

74. The rank of the matrix
$$\begin{pmatrix} 1 & 2 & 3 & 1 & 1 \\ 1 & 4 & 0 & 1 & 2 \\ 0 & 2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$
 is

B) 2

D) 4

75. Let $P = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & 1 \\ 0 & 5 & -1 \end{pmatrix}$ be a 3×3 matrix over R. Then for a given vector

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \in \mathbb{R}^{3 \times 1}$$
, the vector space of all 3×1 matrices over R, the system $PX = Y$ has

a solution if

A)
$$y_1 - y_2 + y_3 = 0$$

C)
$$y_1 + y_2 - y_3 = 0$$

$$y_1 - y_2 + y_3 = 0$$

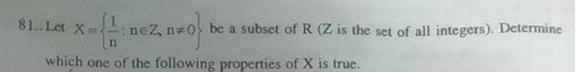
D)
$$2y_1 + y_2 - y_3 = 0$$

76. Let V be a finite dimensional vector space over a field F and T: V → V be a linear operator. Which one of the following statement is true?

A) If T has an eigen-vector then it has infinitely many distinct eigen-vectors

- B) Sum of two eigen-values of T is an eigen-value of T
- C) Sum of two eigen-vectors of T is an eigen-vector of T
- D) Eigen-values of T are necessarily non-zero scalars

A.


-19-

PG-QP - 27

- 77. Which one of the following statements about similar matrices is wrong?
 - W Two similar matrices have the same determinant
 - B) Every square matrix is similar to its transpose
 - C) Two similar matrices have the same minimal polynomial
 - D) If two n×n matrices have the same characteristics polynomial then they are similar
- - A) $x^2(x^2-4)$
 - C) $x(x^2 4)$

- B) $x^2(x-2)$
- D) $x^2(x+2)$
- 79. Which one of the following statements is not correct?
 - A) A linear operator T on a finite dimensional vector space V is diagonalizable if and only if the multiplicity of each eigen-value λ of T is equal to the dimension of the eigen-space $W_1 = \{x \in V : Tx = \lambda x\}$ corresponding to λ
 - B) Two distinct eigen-vectors corresponding to the same eigen-value of a linear operator are always linearly dependent
 - C) If $\lambda_1\lambda_2$ are two distinct eigen-values of a linear operator T on a finite dimensional vector space V then $Tx \lambda_1 x = Tx \lambda_2 x = \theta$ where $x \in V$ implies $x = \theta$, the zero vector of V
 - D) If a vector space V is the direct sum of subspaces $M_1, M_2,...,M_k$ of V then, for $1 \le i, j \le k$ and $i \ne j, M_i \cap M_j = \{0\}$.
- 80. Let X = {x ∈ R : x ≠ 1, 2, ...,100} be a subset of R. Determine which one of the following statements is true.
 - A) Integers 1, 2,...,100 are the only limit points of X
 - B) No limit point of X lies between 1 and 100
 - X is a closed subset of R
 - D) X is an open subset of R

X is a bounded set

B) X is an open subset of R

(2000年2016年2015年2月)

C) X is a closed subset of R

D) X has no limit point in R

82. The set Z of all integers

A) is an open subset of R

BY is a closed subset of R

- C) is a compact subset of R
- D) has infinitely many limit points in R
- 83. Determine which one of the following subsets of R is connected.

A)
$$(-\infty,0)\cup(0,\infty)$$

B) The set Q of all rational numbers

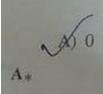
$$\sqrt{\int_{n=1}^{\infty} (-n,n)}$$

D) RZ

84. Consider the set X = [-1, 1] with the subspace topology relative to R. Which one of the following subsets of X is open in X and in R?

$$A) \ \left\{ x \in X : \frac{1}{2} \le \left| x \right| < 1 \right\}$$

B)
$$\left\{ x \in X : \frac{1}{2} < |x| \le 1 \right\}$$


C)
$$\left\{ x \in X : |x| > \frac{1}{2} \right\}$$

D)
$$\left\{ x \in X : \frac{1}{2} < |x| < 1 \right\}$$

85. Which one of the following statements is true

- A) Every closed interval in R is homeomorphic to R
- B) Every open interval of the type (a, b) is homeomorphic to R
- C) Every interval of the type [a, b) is homeomorphic to R
- D) Every interval of the type (a, b] is homeomorphic to R

86. The radius of convergence of the power series $\sum_{n=0}^{\infty} n^{2n} x^n$ is

B) 1/2

C) 1

D) 00

87. Consider the power series $\sum_{n=1}^{\infty}a_n\chi^n$, where $a_n=1$ if $n=k^2$ for some $k\in N$, $a_n=0$, otherwise. Then the region of convergence for this series is

C) (-2, 2)

D) (- 00,00)

88. Let $\sum_{n=1}^{\infty} a_n x^n$ be a power series. Determine which one of the following formulas does not define the radius of convergence ρ .

A) $\rho = \frac{1}{\limsup |a_n| \frac{1}{n}}$

B) $\rho = \frac{1}{\limsup_{n \to \infty} |na_n| 1/2}$

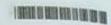
C) $\rho = \frac{1}{\lim \sup \frac{a_n + 1}{a_n}}$

D) $\rho = \frac{1}{\lim \inf |a_n| \frac{1}{n}}$

89. If power series $\sum_{n=1}^{\infty} a_n x^n$ and $\sum_{n=1}^{\infty} b_n x^n$ have radius of convergence ρ_1, ρ_2 respectively,

then the radii of convergence ρ of the power series $\sum_{n=1}^{\infty} (a_n + b_n) x^n$ is given by

A) $\rho = \rho_1 + \rho_2$ C) $\rho = \min \{\rho_1, \rho_2\}$


B) $\rho = \max\{\rho_1, \rho_2\}$

D) $\rho = |\rho_1 - \rho_2|$

90. Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with p its radius of convergence where 0 .

Determine which one of the following facts is correct.

- A) The series converges absolutely and uniformly on any closed interval in $(-\rho, \rho)$
- B) The series converges absolutely and uniformly on any subinterval of $(-\rho, \rho)$
- C) The series converges uniformly on (-ρ, ρ)
- D) The series converges absolutely on [-p,p]

- 91. Let G be the set of all rationals $\frac{p}{q}$, where q is an odd integer. With respect to the usual multiplication of reals, G is not a group because
 - A) The closure property does not hold
 - B) The associative property does not hold
 - C) No element of G can be an identity element
 - D) Not every element of G can have an inverse
- 92. Let G be a group and a, b∈G. Then which one of the following statements is

A If a, b and ab have same order then ab = ba

- B) If $a^3 = e$, the identity element of G, and $aba^{-1} = b^2$ then the order of b is 16
 - C) ab and ba have same order
 - D) b and aba-1 have same order
- 93. Let $G = \{(a, b) \in \mathbb{R}^2 : a \neq 0\}$. On G define a binary operation by (a, b)o(c, d) = (ac, bc + d). With respect to this operation on G, which one of the following is true?
 - A) G is a group with identity (1, 1) and inverse of (a, b) is (a⁻¹, ba⁻¹)
 - B) G is a group with identity (1, 1) and inverse of (a, b) is (a⁻¹, -ba⁻¹)
 - C) G is a group with identity (1, 0) and inverse of (a, b) is (a-1, -ba-1)
 - D) G is not a group
- 94. Which one of the following subsets of G, given in the problem 93, is not a subgroup of G?
 - A) $H_1 = \{(1,0)\}$
 - B) $H_2 = \{(a, b) \in G : a = 1\}$
 - C) $H_q = \{(a,b) \in G : a \text{ is rational}\}$
 - D) $H_4 = \{(a, b) \in G : a \text{ is irrational}\}$

An

[67]

95. Let G be a cyclic group of order 9. Then

- A) G has nine generators
- B) G has six generators
 - C) G has five generators
 - D) G has three generators
- 96. Let P₄ be the permutation group of 4 elements. Then the order of the element A) 6

 - C) 3

- 97. Let G be the group of non-zero real numbers under multiplication. Determine which one of the following functions $f: G \rightarrow G$ is not a homomorphism
 - A) $f(x)=x^2, x \in G$
 - B) $f(x) = |x|, x \in G$
 - C) $f(x) = \sqrt{|x|}, x \in G$
 - D) $f(x)=2^x, x \in G$
- 98. Let a_1 , a_2 ,..., a_n be the roots of a polynomial $x^n + x^{n-1} + ... + x + 1$, where $a_i \neq 1$ for i = 1, 2,...,n. Then the value of $\sum_{i=1}^{n} \frac{1}{1-a_i}$ is
 - A) $\frac{n}{2}$

- B) $\frac{n}{3}$
- C) $\frac{n}{4}$
- 99. Let P3 be the permutation group of 3 elements. Then the number of elements in P3 which are conjugate to (2, 3) ∈ P3 is
 - A) 1

B) 2

- C) 3
- D) 6

100. Let G be a group of order 12. Then the maximal number of subgroups of order 4 in G can be

A) 6

C) 4

D) 3

CUCET Sample Question Paper MSc Mathematics

CUCET MSc Math Sample Que Paper

PART-A

1.	Choose the correct word to fill in the blank. The syears of dedicated teaching.	tude	ents the teacher on teacher's day for twenty
	(A) Facilitated (C) Fantasized	(B) (D)	Felicitated Facillitated
2.	Choose the correct word to fill in the blank. Dho present on the occasion	ni as	s well as the other team members of Indian team
((A) were (C) has	(B) (D)	was have
3.	Choose the word most similar in meaning: Awkw	ard	
	(A) Inept (C) Suitable	(B) (D)	Careful Dread full
4.	Choose the correct verb to fill in the blank below		
	Let us		
	(A) Introvent (C) Atheist	` '	Altruist
5.	Select the most suitable $\underline{\text{Synonym}}$ for the word 'F	RESI	LIENT'.
	(A) Stretchable(C) Rigid	` '	Spirited Buoyant
6.	Select the most suitable $\underline{\text{Synonym}}$ for the word 'Z	EST	•,
	(A) Humour (C) Attitude	(B) (D)	Keen Interest Liking
7.	Select the most suitable $\underline{\text{Antonym}}$ for the word 'R	OBL	JST'.
	(A) Sturdy (C) Muscular	(B) (D)	Ridiculous Feeble
8.	Select the most suitable $\underline{\text{Antonym}}$ for the word 'D	ULL	
	(A) Monstrous(C) fascinating	` '	Horrid Ghastly
9.	Select the pair which shows the same relationshi	p as	CANE : BAMBOO
	(A) Wood : Woodpecker(C) Rubber : Malaysia	` '	Timber : Tree South Africa : Apartheid
10.	Why were you absent your dance cla	sses	s yesterday?
	(A) for (C) in	(B) (D)	from to
11.	A man is facing towards South. He take 135° a facing side of the man?	nticl	ock wise, 180° clockwise rotation then what was
	(A) North-East(C) South-East	. ,	North-West South-West
12.	If the value of "x" is 25% less than the value of "y	". Hc	ow much % y's is more than that of x's ?
	(A) $33\frac{1}{3}\%$	(B)	25%
	(C) 75%	(D)	$66\frac{2}{3}\%$

[A-2] PG-QP-27

13.	If the difference between simple interests for 3 amount will be,	year	s and 4 years at 5% annual rate is 42, then the
	(A) Rs. 210 (C) Rs. 750		Rs 280 Rs. 840
14.	The sum of three consecutive even integer is 54.	Wha	at is the smallest number?
	(A) 18 (C) 16	(B) (D)	
15.	Area of circle and a square is equal. Ratio of one	side	e of the square to radius of the circle will be,
	(A) $1:\sqrt{\pi}$ (C) $1:\pi$	(B) (D)	$\sqrt{\pi}:1$ $\pi:1$
16.	Fill in the blank to complete the series: 181, 174,	178	,, 175, 182.
	(A) 174 (C) 178	(B)	176 180
17.	'Tree' is related to 'Forest' in the same way as 'S	oldie	r' is related to
	(A) Battle (C) Gun	. ,	Army General
18.	that gentleman related to Deepak?		er is the father of my daughter's father." How is
	(A) Father (C) Brother-in-law	(B) (D)	Grandfather Uncle
19.			
	(A) HEV (C) IET	(B) (D)	HIT IEU
20.	Convert 36 km/hr into meters per second.	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	(A) 10 (C) 15	(B) (D)	12 20
21.	'Wings of Fire' was written by		
	(A) APJ Abdul Kalam (C) Amitav Ghosh		Salman Rushdie Shashi Tharoor
22.	'Chhau' dance is associated with which of the fol		
	(A) Punjab (C) Jammu Kashmir	` '	Maharashtra Jharkhand
23.	Mineral rich 'Jharia' is located in which of the follo		
	(A) Bihar (C) Utter Pradesh	` '	West Bengal Gujrat
24.	Jhansi was annexed by which of the following Go		
	(A) Lord Bentinck(C) Lord Cornwalis	` '	Lord Dalhausie Lord Clive
25.	Who among the following personalities stated "S	wara	j is my birth right and I am going to have it."
	(A) Bal Gangadhar Tilak(B) Subhas Chandra Bose(C) Mahatma Gandhi(D) Jawahar Lal Nehru		

[A-3] PG-QP-27

PART - B

26. The sequence
$$\left\{\frac{1}{n}\right\}$$
 is

- (A) convergent
- (B) divergent
- (C) oscillatory
- (D) unbounded

27.
$$\lim_{n\to\infty} \frac{2n-3}{n+1}$$
 equals

- (A) 0
- (B) 1
- (C) 2
- (D) e

28. The series
$$\sum_{n=1}^{\infty} \frac{n+1}{n^p}$$
 is convergent for

- (C) p = 2
- (D) p > 2

(A)
$$0 (B) $1 29. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ is$$$

(A) convergent

- (B) divergent
- (C) conditionally convergent
- (D) absolutely convergent

30.
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$
 equals

- (A) e
- (B) $\frac{1}{a}$
- (C) 0
- (D) 1

- (A) Every bounded sequence is convergent.
- (B) Every convergent sequence is bounded.
- (C) Every bounded sequence has a limit point.
- (D) Every convergent sequence has a unique limit.

32. If a series
$$\sum_{n=0}^{\infty} a_n$$
 converges, then
(A) $\lim_{n\to\infty} a_n = 0$ (B) $\lim_{n\to\infty} a_n = \infty$ (C) $\lim_{n\to\infty} a_n = 1$

- (D) $\lim a_n = 10$

33. If
$$f: \mathbb{R} \to \mathbb{R}$$
 is defined by $f(x) = |x - c|$, for all $x \in \mathbb{R}$, then

- (A) f is discontinuous
- (B) f is differentiable
- (C) f is continuous but not differentiable
- (D) f is continuously differentiable

34. The function
$$f(x) = \begin{cases} x \sin 1/x, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$
 is

(A) continuous at x=0

- (B) derivable at x = 0
- (C) discontinuous at x = 0
- (D) infinitely differentiable at x=0

35.	If Rolle's theorem h	nolds for $f(x) = x^3 +$	$-ax^2 + bx$ on $[-2, 2]$	at $x = 1$, then	
	(A) $a = 1/2, b = -$	-4	(B) $a = 2, b = -4$		
	(C) $a = -1/2, b =$	4	(D) $a = 4, b = 1/2$		
36.	The local maxima	of $x^3 - 3x + 3$ is atte	end at		
	(A) $x = -1$	(B) $x = 1$	(C) $x = 0$	(D) $x = 3$	
37.	The function $f(x)$ =	$= \sin 3x, x \in [0, \pi/2]$	is increasing in the i	interval	
	(A) $(0, \pi/6)$	(B) $(\pi/6, \pi/2)$		(D) $(\pi/3, \pi/2)$	
38.	The function $f(x)$ =	$=x^2$ is not uniformly	continuous on the i	interval	
	(A) $[-1,1]$	(B) $[1, 2]$	(C) $[0,\infty)$	(D) $[0,1]$	
39.	Every compact set	of real numbers is			
	(A) open		(B) closed		
	(C) closed and bou	nded	(D) open and boun	ded	
40.	The set \mathbb{R} of real re	eal numbers is			
	(A) closed		(B) bounded		
	(C) countable		(D) none of the abo	ove	
41.	The upper limit of	the sequence $\{(-1)^n$	} is		
	(A) 1	(B) -1	(C) 0	(D) 2	
42.	If $f(x, y)$ is a homogorphic derivatives, then $x = \frac{1}{6}$	geneous function of d $\frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ is equal to	egree n in x and y are	nd has continuous partial	
	(A) f	(B) nf	(C) 0	(D) $n(n-1)f$	
43.	$\lim_{(x,y)\to(2,1)} (x^2 + 2x -$	y^2) equals		λ	
	(A) 0	(B) -7	(C) 7	(D) -1	
44.	The radius of conve	ergence of the series	$1 + 2x + 3x^2 + 4x^3 + $	is	
	(A) 0	(B) 1	(C) ∞	(D) 2	
45.	The value of the in	tegral $\int_0^1 \int_0^x e^{y/x} dx$	dy is		
	(A) $\frac{(e-1)}{2}$	(B) $\frac{(e+1)}{2}$	(C) e	(D) e^2	
46.	The value of the sur $x^2 + y^2 + z^2 = a^2$ is	rface integral $\int \int_S (x^3)$	$\int dy \ dz + y^3 \ dz \ dx + z$	$(x^3 dx dy)$ over the sphere	
	(A) $\frac{12}{5}\pi a^5$	(B) πa^5	(C) $\frac{5}{12}\pi a^5$	(D) πa^2	

47.	Which of the follow	ing sets forms a basi	is of \mathbb{R}^2 ?	
	(A) $\{(1,1), (3,1)\}$		(B) $\{(0,1), (0,-3)\}$	
	(C) $\{(2,1), (1,-1), (3,-1), $	(3,0)	(D) $\{(1,0), (2,0)\}$	
		$(2 \ 1 \ 1)$		
48.	Rank of the matrix	$\begin{pmatrix} 0 & 3 & 0 \\ 3 & 1 & 2 \end{pmatrix}$ is equal	to	
	(A) 1	(B) 2	(C) 3	(D) 4
49.	Which of the follows	ing functions $F: \mathbb{R}^2$	$\to \mathbb{R}^2$ is not a linear	r transformation?
N	(A) $F(x,y) = (x + y)$	y, x - y)	(B) $F(x, y) = (x +$	y, x)
	(C) $F(x,y) = (2x -$	(y,x)	(D) $F(x,y) = (x,1)$	+y)
50.	The dimension of the	ne vector space of all	1.3×3 real symmetry	ic matrices is
	(A) 9	(B) 6	(C) 3	(D) 4
		$\begin{pmatrix} 1 & x & x^2 \end{pmatrix}$		
51.	The determinant of	$\begin{pmatrix} 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix} $ is		
	(A) $(z-x)(z-y)(z-y)$	(y-x)	(B) $(z - x)^2(z - y)$	(y-x)
	(C) $(z^2 - x^2)(z^2 - y^2)$	$y^2)(y^2 - x^2)$	(B) $(z-x)^2(z-y)$ (D) $(z-x)^2(z-y)$	$(y-x)^2$
52.	If $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, the	en M^{2019} equals		
	$(A) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$(B) \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	$(C)\begin{pmatrix}1&0\\0&1\end{pmatrix}$	$(D) \begin{pmatrix} 1 & 2019 \\ 0 & 1 \end{pmatrix}$
53.	Which of the follows	ing matrix is singula	ur?	
	$(A) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	(B) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	$(C) \begin{pmatrix} 1 & 4 \\ 2 & 10 \end{pmatrix}$	$(D)\begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix}$
54.	If $M = \begin{pmatrix} 4 & 0 \\ 2 & 3 \end{pmatrix}$, the	en the eigenvalues of	M are	
	(A) -4 and -3	(B) 4 and 3	(C) 2 and 0	(D) 3 and -3
55.	Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be Then the matrix re $\{(1,0),(0,1)\}$ is	a linear transformate presentation of the	tion defined by $F(x,$ linear transformation	y) = (2x + 3y, 4x - 5y). In relative to basis $B =$
	$(A) \begin{pmatrix} 2 & 3 \\ 4 & -5 \end{pmatrix}$	$(B) \begin{pmatrix} 0 & -3 \\ 4 & 5 \end{pmatrix}$	$(C) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$(D) \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
56.	The eigenvalues of a	a skew-symmetric ma	atrix are	
	(A) always pure ima	aginary	(B) always zero	

(D) always real

(C) either zero or imaginary

57.	If $M = \begin{pmatrix} 2 & -2 \\ -2 & 5 \end{pmatrix}$	and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, w	hich of the following	is a zero matrix ?
	(A) $M^2 - 7M - 6I$	(B) $M^2 - 7M + 6I$	(C) $M^2 - 6M - 7I$	(D) $M^2 - 6M - 7I$
58.	Let $T: V_n(F) \to V_n$ Then	$_{n}(F)$, where $V_{n}(F)$ are	and $V_m(F)$ are finite di	imensional vector spaces.
>			(B) rank(T)=nullit (D) rank(T) - nullit	
59.	The singleton set {	x } is linearly depend	lent if	
	7 /	(B) $x \neq 0$	(C) x is a scalar	(D) none of these
60.	The eigenvalues of	an orthogonal matri	x are	
	(A) zero	(B) imaginary	(C) always negative	e(D) of unit modulus
61.	Degree of the differ	ential equation $dy =$	$=(y+\sin x)dx$ is	
	(A) 1	(B) 2	(C) 3	(D) 4
62.	Solution of the diffe	erential equation $\frac{dy}{dx}$	$=e^{x-y}+x^2e^{-y}$ is	
	$(A) e^y = x + e^x + e^$		(B) $e^y = x^2/2 + e^x$	+c
	(C) $e^y = x^3/3 + e^x$	+c	(B) $e^y = x^2/2 + e^x$ (D) $e^y = x^4/4 + e^x$	+c
63.	The integrating fac	tor of the differential	equation $(1-x^2)dy$	$/dx + 2xy = x\sqrt{1 - x^2} \text{ is}$
	$(A) \frac{1}{1-x}$	(B) $\frac{1}{1-x^2}$	(C) $1 - x^2$	(D) $1 - x$
64.	The solution of diff	Ferential equation $\frac{d^2}{dx}$	$\frac{y}{x^2} + 4y = 0$ with init	ial conditions $y = 2$ and
	$\frac{dy}{dx} = 0 \text{ when } x = 0$ $(\Delta) \ y = 2 \sin 2x$	-0.18 (B) $u = 2\cos 2x$	(C) $y = \sin 4x$	(D) $u = \tan x$
65.	Which of the follow	ving is a particular in	ntegral of $\frac{d^2y}{dx^2} - 3\frac{dy}{dx}$	
	(A) $\frac{1}{12}e^{5x}$	(B) e^{-5x}	(C) e^x	(D) e^{x^2}
66.	Let $D =: d/dx$. Th	en the value of $\left\{\frac{1}{xL}\right\}$	$\left(\frac{1}{0+1}\right) x^{-1}$ is	
	(A) $\log x$	(B) $\frac{\log x}{x}$	(C) $\frac{\log x}{x^2}$	(D) $\frac{\log x}{x^3}$
67.	If $y_1(x)$ and $y_2(x)$ a	are two solutions of	$\frac{d^2y}{dx^2} + 4y = 0, then then then then then then then then$	he value of Wronskian is
	(A) 0	(B) 1	(C) 2	(D) 3

68.	Differential equatio constant is	n of the family of p	parabola $y^2 = 4ax$,	where a is an arbitrary
	(A) $y = 2x(dy/dx)$	(B) $y = dy/dx$	(C) $y = 2x + dy/dx$	$c(D) dy/dx + y^2 = x^2$
69.	The orthogonal traj	jectory of the hyperb	oola xy = a is	
	$(A) x^2 - y^2 = a$	(B) $x^2 = ay^2$	$(C) x^2 + y^2 = a$	(D) $x = ay^2$
70.	The order of differe	ntial equation $\frac{dy}{dx} =$	$\sqrt{x} + \sqrt{y}$ is	
1	(A) 1	(B) 2	(C) 3	(D) 4
71.	Solution of the initi	al value problem e^x	$(\cos y \ dx - \sin y \ dy)$	= 0 with y(0) = 0 is
	$(A) e^x \cos y + 1 = 0$		$(B) e^x \cos y - 1 = 0$	
	(C) $e^y \cos x + 1 = 0$		(D) $e^y \cos x - 1 = 0$)
72.	If $F(x, y, z) = xy^2 +$	$+3x^2-z^3$, then the	value of $\nabla F(x, y, z)$	at $(2, -1, 4)$ is equal to
	(A) $13i - 4j - 48k$	(B) $i - 4j - k$	(C) $13i + j - 6k$	(D) $-13i + 4j - 6k$
73.	The directional dering the direction of 6		on $F(x, y, z) = xy^2$	$-4x^2y + z^2$ at $(1, -1, 2)$
	(A) 1/7	(B) 2/7	(C) 54/7	(D) 7
74.	If $\overrightarrow{F} = zi + xj + yk$	k , then $\operatorname{curl} \overrightarrow{F}$ is	X	
	(A) $i + j + k$		(C) $i - j - k$	(D) $2i + j - 2k$
75.	Let F be a finite field of F ?	eld. Then which of t	the following may be	the possible cardinality
	(A) 15	(B) 20	(C) 25	(D) 30
76.	Every subgroup of a	an abelian group is		
	(A) abelian		(B) cyclic	
	(C) non abelian		(D) none of the abo	ove.
77.	Le $G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \mid a \right\}$	$a \in \mathbb{R} \setminus \{0\}$ be a gr	roup with binary op	eration defined by usual
	matrix multiplication	on. Then the inverse	of $\begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$ is	YON
	$(A) \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$	(B) $\begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}$	(C) $\begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$	(D) $\begin{bmatrix} 1/8 & 1/8 \\ 1/8 & 1/8 \end{bmatrix}$
78.	Let H and K be sub of G ?	groups of G . Then w	which of the following	is necessarily a subgroup

(C) $H \cap K$

(D) $H \cup K$

(A) HK

(B) *KH*

79.	9. Let S_5 be the permutation group on five symbols $\{1, 2, 3, 4, 5\}$. Then order of permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 3 & 5 & 1 \end{pmatrix}$ is equal to						
	$1 - \sqrt{2}$	$4 \ 3 \ 5 \ 1$					
	(A) 5	(B) 4	(C) 3	(D) 6			
80.	Let G be a group a solves the equation		on-identity elements.	Which of the following			
>	(A) acb^{-1}	(B) $a^{-1}b^{-1}$	(C) $a^{-1}cb^{-1}$	(D) cb^{-1}			
81.	Let H be a subgrou	p of a noncyclic grou	up G . Then which of	the following is correct?			
	(A) H is always not	ncyclic	(B) H is always cyc	elic			
	(C) H is always not	nabelian	(D) None of the ab	ove			
82.	Let S_6 be the permutation group on six symbols $\{1, 2, 3, 4, 5, 6\}$. Which of the following is not an even permutation?						
	(A) (1 3 5 6 2)	X	(B) (1 2 3)(4 5)(4 5	5)			
	(C) (2 6 3 4 5 1)		(D) (1 2)(1 4)(2 3)	$(4\ 5)$			
83.	Which of the follow	ring is correct?					
	(A) Every integral	domain is a field.					
	(B) Every finite int	egral domain is a fie	ld.				
	(C) There is an integral domain with characteristic equal to 10.						
	(D) None of the ab	ove.	Y /				
84.	Let J be an ideal of such that $u \in J$. The	_	with unity and let u	be an unit element of R			
	(A) The multiplicat	tive identity $1 \notin J$					
	(B) J is a proper id	leal of R such that J	$I \neq R$				
	(C) $J = R$						
	(D) There is a mini	mal ideal M such the	$\text{nat } J \subset M \subseteq R$				
85.	Which of the follow	ring is a prime ideal	of $(\mathbb{Z}, +, \cdot)$?				
	(A) $6\mathbb{Z}$	(B) $2\mathbb{Z} \cap 4\mathbb{Z}$	(C) $7\mathbb{Z}$	(D) $4\mathbb{Z} \cap 8\mathbb{Z}$			
86.	If $Z = 2 - 3i$, then	Z equals		Y			
	(A) 13	(B) $\sqrt{13}$	(C) -13	(D) -1			
87.	$\int_0^1 z e^{2z} \ dz \text{ equals}$						
	(A) $e^2 + 1$	(B) $(e^2+1)/4$	(C) $(e^2 - 1)/4$	(D) $e^2 - 1$			
88.	$\lim_{z \to i} \frac{Z^{10} + 1}{Z^6 + 1} \text{ equals}$						
	(A) $3/5$	(B) $2/5$	(C) $5/3$	(D) $1/3$			

89	9. The integral \int_{3i}^{1-}	4z dz equals			
	(A) $18 - 4i$	(B) $-4i$	(C) i	(D) $-i$	
90	0. If $f(z)$ is analytic $\oint_C f(z) dz$ equals	in a simply connect	sed domain D and	f'(z) is continuous in D , then	
	(A) 0	(B) 1	(C) $2\pi i$	(D) $-2\pi i$	
91	1. The value of the	integral $\int_{ z-2 =2} \frac{5}{z^2}$	$\frac{5z+7}{+2z-3} dz \text{ is equ}$	al to	
	(A) πi	(B) $2\pi i$	(C) $3\pi i$	(D) $6\pi i$	
92	2. If $f(z) = u(x, y)$	+iv(x,y) is analytic	c in a domain D ,	then	
	(A) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} =$	0 and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} =$	$= 0 \text{ (B) } \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$	$\frac{u}{2} = 0 \text{ and } \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$	
	(C) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \neq$	0 and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} =$	$= 0 \text{ (D) } \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y}$	$\frac{u}{2} \neq 0 \text{ and } \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \neq 0$	
93	3. An entire function	n is			
	(A) infinitely diffe	erentiable	(B) finitely dis	fferentiable	
	(C) not differentia	able	(D) identically	zero	
94	4. Which of the follo	owing is incorrect st	tatement?		
		ire and bounded in			
		lytic at z_0 , then $f'($	z) is also analytic	at z_0 .	
	(C) Analytic function (D) Entire function	on is analytic.			
9.5	5. The complex line				
56	(A) path depende	_	(B) independe	ent of end points	
	(C) path indepen		(D) none of the		
96	6. The set of all feas	sible solutions to a l	linear programmin	ng problem (LPP) is	
	(A) a concave set		(B) a convex s	set	
	(C) a bounded se	t	(D) an infinite	e set only	
97	7. A basic feasible so is	olution to a LPP, in	which at least on	e of the basic variables is zero	
	(A) degenerate	(B) infeasible	(C) non-degen	erate (D) unbounded	
98	8. The optimal solu $3x_1 + x_2 \ge 90, x_1$		aximize $Z = 4x_1$	$+ x_2$, such that $x_1 + x_2 \le 50$,	
	(A) $x_1 = 30, x_2 =$		(B) $x_1 = 20, x$	$_{2}=30$ '	
	(C) $x_1 = 0, x_2 = 0$	0	(D) $x_1 = 0, x_2$	= 50	

- 99. Which of the following is incorrect statement?
 - (A) Arbitrary intersection of convex sets is a convex set.
 - (B) Hyperplane is a convex set.
 - (C) Union of two convex sets need not to be a convex set.
 - (D) Union of two convex sets is a convex set.
- 100. In a linear programming problem constraints are
 - (A) nonlinear

- (B) linear
- (C) linear as well as nonlinear
- (D) none of the above