

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2016

Time : 2 Hours

Max. Marks: 100

Instructions:

- (*i*) There are a total of **50** questions in **Part-A** and **Part-B** together.
- (*ii*) There is a negative marking in Part-A. Each correct answer carries 1 mark and each wrong answer carries
 -0.33 mark. Each question in Part-A has only one correct option.
- (*iii*) There is **no negative** marking in **Part-B**. Each correct answer carries **3 marks**. In **Part-B** some questions have **more than** one correct option. All the correct options have to be marked in OMR sheet other wise **zero marks** will be credited.

PART-A

- 1. Which of the following is an uncountable subset of \mathbb{R}^2 ?
 - (a) $\{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ or } x + y \in \mathbb{Q}\}$ (b) $\{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ and } y \in \mathbb{Q}\}$
 - (c) $\{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}$ (d) $\{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ or } y^2 \in \mathbb{Q}\}$
- 2. Which of the following is an unbounded subset of \mathbb{R}^2 ?
 - (a) $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ REFERENCE (b) $\{(x, y) \in \mathbb{R}^2 : x + y \le 1\}$ (c) $\{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$ (d) $\{(x, y) \in \mathbb{R}^2 : |x| + y^2 \le 1\}$
- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function. Then which of the following is true?
 - (a) If f(0) = 0 = f''(0) then f'(0) = 0
 - (b) f is a polynomial
 - (c) f' is continuous
 - (d) If f''(x) > 0 for all x in \mathbb{R} then f(x) > 0 for all x in \mathbb{R}
- 4. The non-zero values for x_0 and x_1 such that the sequence defined by the recurrence relation $x_{n+2} = 2x_n$, is convergent are
 - (a) $x_0 = 1$ and $x_2 = 1$ (b) $x_2 = 1/2$ and $x_1 = 1/4$
 - (c) $x_0 = 1/10$ and $x_1 = 1/20$ (d) none of the above

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

5.	The set of all value	es of <i>a</i> for which the series \sum_{n}^{n}	$\sum_{n=1}^{\infty} \frac{a^n}{n!}$ converges is	
	(a) $(0,\infty)$	(b) (−∞,0]	(c) $(-\infty,\infty)$	(d) (-1,1)
6.	Consider $f(x) = \begin{cases} \\ \\ \\ \end{cases}$	$ x $, if $-1 \le x \le 1$, x^2 , otherwise . Then		
	(a) f is not continu	ous at 0	(b) f is not cont	inuous at 1
	(c) f is not continu	ious at -1	(d)f is continuo	ous at all points
7.	Consider the stater	nent S: "Not all students in the	his class are tall". The	statement S means
	(a) All students in	this class are short	(b) All short stu	dents are in this class
	(c) At least one st	udent in this class is not tall	(d) No short stu	dent is in this class
8.	A subset S of \mathbb{N} is	s infinite if and only if		
	(a) S is not bound	•	(b) S is not bou	inded above
		that $\forall n \ge n_0, n \in S$		\mathbb{N} such that $x < a$
9.		of order 35, the number of el	ements of order 35 is	
2.	(a) 1	(b) 4	(c) 6	(d) 24
10.		natrix. Consider the following		(0) 21
		A is equal to <i>n</i> then the rank		of A is also equal to <i>n</i> .
				trix of A is also equal to $n-2$.
	-	ement from the following		
	(a) S_1 and S_2 are		(b) S_1 is true by	it not S
	(c) S_2^1 is true but		(d) Neither S_1 r	-
11.	-	nt P which is at the same dis		-
	(a) an unbounded			
	(c) a pair of parall		(d) a pair of inte	precting planes
		_	· · · -	iscering planes
12.	The value of the in	tegral $\oint_C (x^3 + x)dx + (1 + y^2 + y^2)dx$	$+y^3$)dy, where	
	$C = \{(x(t), y(t)) \mid x$	$x(t) = 2 + 3\cos t, \ y(t) = 5 + 4\sin^2 t$	in $t, 0 \le t < 2\pi$ }, is	
	(a) 0	(b) π	(c) 10π	(d) 12π
13.	Let V be the region	which is common to the solid s	phere $x^{2} + y^{2} + z^{2} \le 1$ a	and the solid cylinder $x^2 + y^2 \le 0.5$.
	Let ∂V be the boundary density of V	undary of V and \hat{n} be the un	it outward normal dra	wn at the boundary. Let
	$\vec{F} = (y^2 + z^2)\hat{i} + (z$	$(x^2 - 2x^2)\hat{j} + (x^2 + 2y^2)\hat{k}$. The	en the value of $\iint_{\partial V} \vec{F} \cdot \hat{n}$	dS is equal to
	(a) 0	(b) 1	(c) –1	(d) π

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(2)

14.	Let $R([a,b])$ be the set of all Riemann integrable fur	nctions on $[a,b]$. Consider the following statements.
	S_1 : $f \in R([a,b])$ whenever there exist, $g, h \in R([a,b])$	$(a,b]$) such that $g \le f \le h$
	S_2 : $f \in R([a,b])$ whenever there exist two continu Which of the following statements is true?	ous functions g, h on [a,b] such that $g \le f \le h$
	(a) S_1 and S_2 are true	(b) S_1 is true but not S_2
	(c) S_2 is true but not S_1	(d) Neither S_1 nor S_2 is true
15.	The shortest distance from the sphere $x^2 + y^2 + z^2$ equal to	-2x - 4y - 6z + 11 = 0 to the plane $x + y + z = 3$ is
	(a) $\sqrt{3}$ (b) $2\sqrt{3}$	(c) $3\sqrt{3}$ (d) $4\sqrt{3}$
16.	A solution of $(x^2y^2 + y^4 + 2x)dx + 2y(x^3 + xy^2 + 1)dx$	dy = 0 is
	(a) $x^2 + \log x^2 - y^2 = \text{constant}$	(b) $x^2y + \log x^2 - y^2 = \text{constant}$
	(c) $x^2 y + \log(x^2 + y^2) = \text{constant}$	(d) $xy^2 + \log(x^2 + y^2) = \text{constant}$
17.	Let $f, g: \mathbb{R} \to \mathbb{R}, f(x) = x^2, g(x) = \sin x$. Which of	the following statements is true?
	 (a) f and g are uniformly continuous (b) f and g are not uniformly continuous (c) f is uniformly continuous but g is not (d) f is not uniformly continuous but g is uniformly c 	ontinuous
18.	If A and B are square matrices satisfying $AB = BA$,	$det(A) = 1$ and $det(B) = 0$ then $det(A^3B^2 + A^2B^3)$
	is equal to	
1.0	(a) -1 (b) 0	(c) 1 (d) 2
19.	Which of the following subsets are subspaces of \mathbb{R}^3 (a) $\{(x, y, z) \in \mathbb{R}^3 / 5x - y + z = 0\}$	
	(c) { $(x, y, z) \in \mathbb{R}^3 / x, y, z$ are rationals}	(d) { $(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 1$ }
20.	A palindrome is a word which reads the same backward of palindromes of length 11 (eleven) can be formed	
	(a) K^6 (b) K^5	(c) $\binom{K}{6}$ (d) $\binom{K}{5}$
21.	The center of the ring of 2×2 matrices over \mathbb{R} is	
	(a) $\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} / a, b \in \mathbb{R} \right\}$	(b) $\left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} / a \in \mathbb{R} \right\}$
	(c) $\left\{ \begin{pmatrix} 0 & b \\ a & 0 \end{pmatrix} / a, b \in \mathbb{R} \right\}$	(d) $\left\{ \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} / a \in \mathbb{R} \right\}$

22.	The set of units of the Gaussian ring $\{a+ib/a, b\in a\}$	\mathbb{Z} is
	(a) $\{\pm 1, \pm i\}$	(b) $\mathbb{Z} \cup i\mathbb{Z}$
	(c) $\{a+ib/a, b \in \{\pm 1, 0\}\}$	(d) Z
23.	Group of automorphisms of $(\mathbb{Z}/10\mathbb{Z}, +)$ is isomorphication.	phic to
	(a) $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$	(b) ℤ / 2ℤ
	(c) $\mathbb{Z}/4\mathbb{Z}$	(d) $\mathbb{Z}/10\mathbb{Z}$
24.	The system of equations $6x_1 - 2x_2 + 2\alpha x_3 = 1$ and	$3x_1 - x_2 + x_3 = 5$ has no solution if α is equal to
	(a) -5 (b) -1	(c) 1 (d) 5
25.	(a) the probability that the sum of the selected num of the selected numbers is odd(b) the probability that the sum of the selected num the selected numbers is odd(c) the probability that the product of the selected	
	(d) the probability that the product of the selected	I numbers is odd is equal to $2/3$
	PART-	В
6.	Which of the following are true?	
	(a) There is a surjective function $f : \mathbb{N} \to \mathbb{N} \times \mathbb{N}$	
	(b) There is an injective function $f : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$	
	(c) There is a bijective function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$	
27.	(d) There is a bijective function $f : \{0,1\} \times \mathbb{N} \to \mathbb{N}$ Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that	$\times \mathbb{N}$ OUR f(1) = f(0) + 1. Then which of the following are true
	(a) f' is constant	(b) $f(2) = f(1) + 1$
	(c) $f'(x) = 1$ for some x in (0, 1)	(d) $ f'(x) \le 1$ for all x in (0, 1)
8.	Let $P(\mathbb{N}) = \{ \text{All subsets of } \mathbb{N} \}$. Then which of the	following are equivalence relations on $P(\mathbb{N})$?
	(a) $A \sim B$ if and only if $ A = B $	(b) $A \sim B$ if and only if $A \cup B = B$
	(c) $A \sim B$ if and only if $A \cup B = \mathbb{N}$	(d) $A \sim B$ if and only if $A \cap B \neq \phi$
9.	Let $f(x) = x^3 + ax^2 + bx + c$ where a, b, c are	real numbers. Suppose $c < 0, a+b+c > -1$ and
	a-b+c>1. Then which of the following are true:	?
	(a) All roots of $f(x)$ are real	
	(b) $f(x)$ has one real root and two complex root	ts
	(c) $f(x)$ has two roots in (-1, 1)	

Downloaded from https://pkalika.in/que-papers-collection/

(4)

(5)

30. Suppose
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 is the map $T((x, x_2, x_3)) = (2x_1, x_2, 2x_1)$. Then which of the following is true?
(a) T has only two distinct eigenvalues (b) $\ker(T) \neq \{(0, 0, 0)\}$
(c) T has three distinct eigenvalues (d) Range of T is isomorphic to \mathbb{R}^2
31. Consider the following statements
 $S_1: \sum_{n=1}^{\infty} \frac{1}{(\log \log n)^{\log x}}$ is a convergent series
 $S_2: \sum_{n=1}^{\infty} \frac{1}{n!^{\log \log \log x}}$ is a convergent series
Which of the following statements are true?
(a) S_1 and S_2 are true (b) S_1 is true but not S_2
(c) S_2 is true but not S_1 (d) Neither S_1 nor S_2 is true
32. The functions $f(z)$ and $g(z)$ are such that the function
 $\overline{F} = (2x + yf(z))\hat{i} + (2y + xf(z))\hat{j} + xyg(z)\hat{k}$
can be written as a gradient of some scalar function
Pick up the possible choices for f and g from the following
(a) $f(z) = z^3$ and $g(z) = 3z^2$ (b) $f(z) = 0$ and $g(z) = 0$
(c) $f(z) = 1$ and $g(z) = 0$ (d) $f = 1$ and $g = z$
33. If β is the radius of the circle of intersection of the sphere $x^2 + y^2 + z^2 - 2x - 4y - 6z + \alpha = 0$ and the
plane $x + y + z = 1$, then a relation between α and β is
(a) $3\alpha + 3\beta^2 = 17$
(b) $3\alpha^2 - 3\beta^2 = 67$
34. Which of the following sequences converge to $e^?$
(a) $\left(1 + \frac{1}{2n}\right)^{\alpha}$ (b) $\left(2 + \frac{1}{21} + \frac{1}{3!} + ... + \frac{1}{n!}\right)$
(c) $\left(1 + \frac{1}{n}n^3$ (d) $\left(\frac{2n+1}{2n-2}\right)^{\alpha}$
35. For every pair of continuous functions $f, g: \mathbb{R} \to \mathbb{R}$, which of the following statements are "always" true?
(a) If $f(x) = g(x), \forall x \in \mathbb{Q}$, then $f(x) = g(x), \forall x \in \mathbb{Q}$
(b) $\{x \in \mathbb{R} / f(x) = g(x)\}$ is an open subset of \mathbb{R}

(c) The product of f and g is continuous

(d) If
$$h(x) = \begin{cases} \frac{f(x)}{g(x)}, & \text{for } g(x) \neq 0\\ 0, & \text{otherwise,} \end{cases}$$
 then *h* is continuous

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

36. Let A and B be two $n \times n$ matrices such that rank(A) = n, rank(B) = n - 1. Then which of the following are true?

- (a) $det(A^3) = 0$ (b) det(B) = 0
- (c) rank(AB) = n 1 (d) rank(BA) = n 1
- 37. Which of the following statements are true?
 - (a) Every finite group of even order contains at least one element of order 2
 - (b) If every subgroup of a group is normal then the group is abelian
 - (c) If G is an abelian group of odd order, then $x \to x^2$ is an automorphism of G
 - (d) If the elements a, b in a group have finite order then the element ab is also of finite order.

38. For
$$A \subset \mathbb{R}$$
, define $\chi_A(x) = \begin{cases} 1 & \text{for } x \in A, \\ 0 & \text{for } x \notin A. \end{cases}$ Then χ_A is Riemann integrable over [-1, 1] if

- (a) $A = \mathbb{Q} \cap [-1,1]$ (b) $A = [-1,1] \setminus \mathbb{Q}$ (c) $A = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$ (d) $A = \{\pm 10^{-n} / n \in \mathbb{N}\}$
- 39. A solution of $(D^2 + 1)^3 y = \sin x$ is
 - (a) $\sum_{n=1}^{3} (c_n x^{n-1} \sin x + d_n x^{n-1} \cos x)$ for some $c_n, d_n \in \mathbb{R}, 1 \le n \le 3$
 - (b) $\sum_{n=1}^{3} (c_n \sin^n x + d_n \cos^n x)$ for some $c_n, d_n \in \mathbb{R}, 1 \le n \le 3$
 - (c) $\sum_{n=1}^{3} (c_n \sin nx + d_n \cos nx)$ for some $c_n, d_n \in \mathbb{R}, 1 \le n \le 3$ (d) none of the above
- 40. Let $\sum_{n=0}^{\infty} a_n$ be a divergent series of positive terms. Then it follows that
 - (a) $\sum_{n=0}^{\infty} a_n^2$ is also divergent (b) the sequence (a_n) does not converge to 0
 - (c) the sequence (a_n) is not bounded

(d)
$$\sum_{n=0}^{\infty} \sqrt{a_n}$$
 is also divergent

- 41. Let (a_n) be a sequence where all rational numbers are terms (and all terms are rational). Then
 - (a) no subsequence of (a_n) converges
 - (b) there are uncountable many convergent subsequence of (a_n)
 - (c) every limit point of (a_n) is a rational number
 - (d) no limit point of (a_n) is a rational number

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

		(,)
42.	Let $y_1(x) = \sum_{n=1}^{3} c_n \phi_n(x)$ and $y_2(x) = \sum_{n=1}^{3} d_n \psi_n(x)$	be complementary solutions to $P(D)y = 0$ and
	$Q(D)y = 0$ respectively, where $P(D)y = (D^3 + a_1D)$	$a^{2} + a_{2}D + a_{3})y$ and
	$Q(D)y = (D^3 + b_1D^2 + b_2D + b_3)y$. Then the general	l solution of $P(D)Q(D)y = 0$ is equal to
	(a) $y = \sum_{n=1}^{3} (c_n \phi_n + d_n \psi_n)$	(b) $y = \left(\sum_{n=1}^{3} c_n \phi_n\right) \left(\sum_{n=1}^{3} d_n \psi_n\right)$
	(c) $y = \sum_{n=1}^{3} (c_n \phi_n^2 + d_n \psi_n^2)$	(d) None of these
43.	The number of elements in S_5 whose order is 2 is	
	(a) 10 (b) 12	(c) 25 (d) 40
44.	Consider the following statements	
	S_1 : There is no polynomial $P(x)$ with integer coeff	icients such that $P(5) = 5$ and $P(9) = 7$.
	$\boldsymbol{S}_2 \colon If \ \alpha \ and \ \beta \ are two old integers then \ \alpha^2 + \beta^2$	is not a perfect square
	Which of the following statements are true?	
	(a) S_1 and S_2 are true	(b) S_1 is true but not S_2
	(c) S_2 is true but not S_1	(d) Neither S_1 nor S_2 is true
45.	Let A be an $n \times n$ matrix. If $A^m = 0$ for some integer	m then which of the following statements are true?
	(a) If A is nilpotent then $det(I + A) = 1$	
	(b) If A is nilpotent then $A^n = 0$	
	(c) If every eigenvalue of A is 0, then A is nilpotent	
	(d) If A is nilpotent then every eigenvalue of A is 0	
46.	The number of automorphisms of $\mathbb{Z}[\sqrt{2}]$ is	
	(a) 1 (b) 2	(c) 4 (d) infinity
47.	The kernel of a ring homomorphism from $\mathbb{R}[X]$ to	\mathbb{C} defined by $f(X) \to f(3+2i)$ is
	(a) $\langle X^2 - 6X + 13 \rangle$	(b) $\left\langle X^2 + 6X + 5 \right\rangle$
	(c) $\mathbb{R}[X]$	(d) $\{0\}$
48.	Pick up prime elements of the ring of Gaussian integ	ers $G = \{x + iy \mid x, y \in \mathbb{Z}\}$ from the following
	(a) 2 (b) 3	(c) 7 (d) 13
49.	A subset S of \mathbb{N} is said to be thick if among any 20 belong to S. Which of these subsets are thick?	16 consecutive positive integers, at least one should
	(a) The set of the geometric progression $\{2, 2^2, 2^3,\}$	}
	(b) The set of the arithmetic progression {1000, 200	
	(c) $\{n \in \mathbb{N} \mid n > 2016\}$	· · · · ·
	(d) The set of all composite numbers	
	(a) The set of an composite numbers	

 South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009

 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

- 50. Three students are selected at random from a class of 10 students among which 4 students know C programming of whom 2 students are experts. If every such selection is equally likely, then the probability of selecting three students such that at least two of them know C programming with at least one out of the two selected being an expert in C programming is
 - (a) less than 1/4
 - (c) greater than 1/2 but less than 3/4
- (b) greater than 1/4 but less than 1/2
- (d) greater than 3/4

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2016

(9)

ANSWER KEY

PART-A

1.	(a, a, d)	2	(b)	2	(a)	4	(d)	5	(a)
1.	(a, c, d)	2.	(0)	э.	(c)	4.	(d)	5.	(c)
6.	(d)	7.	(c)	8.	(b)	9.	(d)	10.	(b)
11.	(d)	12.	(a)	13.	(a)	14.	(d)	15.	(a)
16.	(d)	17.	(d)	18.	(b)	19.	(a)	20.	(a)
21.	(b)	22.	(a)	23.	(c)	24.	(c)	25.	(b)
				PA	RT-B				
26.	(a, b, c, d)	27.	(c)	28.	(a)	29.	(a, c, d)	30.	(b, c, d)
31.	(c)	32.	(a, b, c)	33.	(a)	34.	(b, c)	35.	(a, c)
36.	(b, c, d)	37.	(a, c)	38.	(c, d)	39.	(d)	40.	(d)
41.	(b)	42.	(a)	43.	(c)	44.	(a)	45.	(a, b, c, d)
46.	(b)	47.	(a)	48.	(b, c)	49.	(b, d)	50.	(b)
			LAKEEK	ヒ	IJEAVU	JUI	V		

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2015

Time : 2 Hours

Max. Marks: 100

Instructions:

- (*i*) There are a total of **50** questions in **Part-A** and **Part-B** together.
- (*ii*) There is a negative marking in Part-A. Each correct answer carries 1 mark and each wrong answer carries
 -0.33 mark. Each question in Part-A has only one correct option.
- (*iii*) There is **no negative** marking in **Part-B**. Each correct answer carries **3 marks**. In **Part-B** some questions have **more than** one correct option. All the correct options have to be marked in OMR sheet other wise **zero marks** will be credited.

PART-A

- 1. Let A be an $m \times n$ matrix and B be an $n \times m$ matrix. Then which of the following statements is true?
 - (a) $\operatorname{rank}(AB) > \min(\operatorname{rank}(A), \operatorname{rank}(B))$
 - (b) $\operatorname{rank}(AB) \le \min(\operatorname{rank}(A), \operatorname{rank}(B))$
 - (c) $\operatorname{rank}(AB) \le \max(\operatorname{rank}(A), \operatorname{rank}(B)) \min(\operatorname{rank}(A), \operatorname{rank}(B))$
 - (d) $\operatorname{rank}(AB) > \max(\operatorname{rank}(A), \operatorname{rank}(B)) \min(\operatorname{rank}(A), \operatorname{rank}(B))$
- 2. Let A be an $n \times n$ non-zero matrix where A is not an identity matrix. If $A^2 = A$, then the eigenvalues of A are given by
 - (a) 1 and -1 (b) 0 and 1 (c) -1 and 0 (d) 0 and n
- 3. Let A be a 7×5 matrix over \mathbb{R} having at least 5 linearly independent rows. Then the dimension of the null space of A is
 - (a) 0 (b) 1 (c) 2 (d) at least 2
- 4. The dimension of the vector subspace W of $M_2(\mathbb{C})$ given by

$$W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{C}, a+b=c, b+c=d, c+a=d \right\} \text{ is equal to}$$
(a) 4 (b) 3 (c) 2 (d) 1
If $|a-b|=|c-d|$, then
(a) $a=b+c-d$ (b) $a=b-c+d$

(c) a=b+c-d and a=b-c+d (d) a=b+c-d or a=b-c+d

5.

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

				2
6.	 The set of all real number (a) ℝ (c) {0} 	s <i>x</i> for which there is son	-	ber y such that $x < y$ is equal to negative real numbers
7.	Let \hat{n} be the unit outward	normal to the sphere of ra	adius α in \mathbb{R}^3 . Then	the value of the integral $\int \vec{r} \cdot \hat{n} dS$
	evaluated on the sphere is			
			(c) $\frac{4}{3}\pi\alpha^2$	(b. 4. ³
	(a) $\frac{4}{3}\pi\alpha^3$	(b) $4\pi\alpha^2$	(c) $\frac{1}{3}$ has	(d) $4\pi\alpha^3$
8.	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $r = \sqrt{2}$	$\overline{x^2 + y^2 + z^2}$ and $n \in \mathbb{N}$	then ∇r^n is equal to)
	(a) $nr^{n-1}\vec{r}$	(b) $(n-1)r^{n-2}\vec{r}$	(c) $nr^{n-2}\vec{r}$	(d) $(n-1)r^n \vec{r}$
9.	The value of the integral	$\int_{C} \left(\frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \right)$	\mathbf{C} where C is the circ	ele with radius α centered at the
	origin is equal to			
	(a) 0	(b) $\frac{\pi}{2}$	(c) 2π	(d) 2πα
10.	The volume of the cube w is equal to	phose two faces lie on the	planes $6x - 3y + 2z$	+1=0 and $6x-3y+2z+4=0$
	(a) 27	(b) $\frac{27}{343}$	(c) $\frac{3}{7}$	(d) 10
11.	The number of common ta	ngent planes to the sphere	$s(x+2)^2 + y^2 + z^2 =$	=1, $(x-2)^2 + y^2 + z^2 = 1$ passing
	through the origin is equal			
	(a) 0	ABLER END	EAC) 2 OUR	(d) none of these
12.	Let <i>c</i> be an arbitrary non-ze is	ero constant. Then the orth	ogonal family of curv	tes to the family $y(1-cx) = 1 + cx$
	(a) $3y - y^3 + 3x^2 = \text{const}$	ant	(b) $3y + y^3 - 3x^2$	= constant
	(c) $3y - y^3 - 3x^2 = \text{const}$	ant	(d) $3y + y^3 + 3x^2$	= constant
13.	Consider the following two	o statements.		
	S_1 : If (a_n) is any real se	quence, then $\left(\frac{a_n}{1+ a_n }\right)$	has a convergent sul	osequence
	S_2 : If every subsequence	of (a_n) has a convergent	nt subsequence, then	(a_n) is bounded.
	Which of the following sta			
	(a) Both S_1 and S_2 are the		(b) Both S_1 and	-
	(c) S_1 is false but S_2 is the	rue	(d) S_1 is true but	S_2 is false

(11)

14.	The largest interval I such t	that the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ con	verges whenever x	$\in I$ is equal to
	(a) [-1, 1]	(b) [-1, 1)		
15.	Let $\sum a_n$ be a convergent	series. Let $b_n = a_{n+1} - a_n$	for all $n \in \mathbb{N}$. Then	
	(a) $\sum b_n$ should also be c	onvergent and $(b_n) \rightarrow 0$	as $n \to \infty$	
	(b) $\sum b_n$ need not be con	vergent but $(b_n) \rightarrow 0$ as	$n \rightarrow \infty$	
	(c) $\sum b_n$ is convergent but	it (b_n) need not tend to z	ero as $n \to \infty$	
	(d) none of the above state			
16.	Consider the real sequences	(a_n) and (b_n) such that \sum	$\begin{bmatrix} a_n b_n & \text{converges. W} \end{bmatrix}$	hich of the following statements
	is true?		_	
	(a) If $\sum a_n$ converges, the	en (b_n) is bounded	(b) If $\sum b_n$ conver	ges, then (a_n) is bounded
	(c) If (a_n) is bounded, the	en (b_n) is converges	(d) If (a_n) is unbound	unded, then (b_n) bounded
17.	If $f: \mathbb{R} \to \mathbb{R}$ and $\lim_{h \to 0} (f(x))$	(x+h) - f(x-h) = 0 for a	Ill $x \in \mathbb{R}$, then	
	(a) f need not be continuou	18	(b) f is continuous b	out not differentiable
	(c) f is differentiable but f	" need not be continuous	(d)f is differentiabl	e and f' is continuous
18.	If $f:[0,1] \to \mathbb{R}$ is continue	bus and $f(1) < f(0)$, then	L .	
	(a) $f([0,1]) \subseteq [f(1), f(0)]$		(b) $f([0,1]) \supseteq [f(1)]$	(), f(0)]
	(c) $f([0,1]) = [f(1), f(0)]$			not be a closed interval
19.	Consider $f:[-1,2] \to \mathbb{R}$ de	efined by $f(x) = \begin{cases} y D = x \\ 2x^3 - 4x \end{cases}$	$x, \qquad \text{if } -1 \le x \le x^2 + 2x, \qquad \text{if } 0 < x \le x$	$\frac{10}{2}$. Then the maximum value of 2
	f(x) is equal to			
	(a) 0	(b) 2	(c) 4	(d) 10
20.	The function e^x from \mathbb{R} to	\mathbb{R} is		
	(a) both one-one and onto		(b) one-one but not	
21.	(c) onto but not one-one The number of elements of	order 6 in a cyclic group	(d) neither one-one of order 36 is equa	
	(a) 2	(b) 3	(c) 4	(d) 6

Downloaded from https://pkalika.in/que-papers-collection/

(12)

(13)

4

22.	Consider the following	two statements		
	S_1 : There cannot exist	an infinite group in which	h every element has a fi	inite order.
	S_2 : In a group G if a	$e \in G$, $a^7 = e$ and $a^9 = e$, then $a = e$	
	Which of the following	statements is true?		
	(a) Both S_1 and S_2 are	e true	(b) Both S_1 and	S ₂ are false
	(c) S_1 is false but S_2 a	are true	(d) S_1 is true but	t S ₂ are false
23.	Let <i>R</i> be a commutative	ve ring with unity and $1 \neq$	0. Let a be a nilpotent	t element, x be a unit. Then
	(a) $1+a$ is not a unit		(b) $a - x$ is a nilp	potent element
	(c) $x + a$ is a unit		(d) none of the a	bove statements is true
24.	Let R be a commutativ	e ring with unity. Conside	er the following two stat	tements.
	S_1 : If for any $a \in R, a$	$a^2 = 0$ implies $a = 0$ then	R does not have non z	ero nilpotent elements.
	S_2 : If A and B are tw	o ideals of R with $A + B$	$= R$ then $A \cap B = AB$	
	Then which of the follo	wing statements is true?		
	(a) Both S_1 and S_2 ar	e true	(b) Both S_1 and	S ₂ are false
	(c) S_1 is false but S_2 a	are true	(d) S_1 is true but	t S ₂ are false
25.	In how many ways car	n one place 8 identical ba	lls in 3 different boxes	so that no box is empty?
	(a) 8	(b) 28	(c) 36	(d) 21
		PAR	DT B	
		IAF		
26.	The projection of the j	point (11, -1, 6) onto the	e plane $3x + 2y - 7z - 5$	1 = 0 is equal to
	(a) (14, 1, -1)	(b) (4, 2, -5)	(c) (18, 2, 1)	(d) none of these
27.	The projection of the s	straight line $x - y - z = 0$	and $2x+3y+z=5$ on	to the yz-plane is
	(a) $5y = -3z + 5$ and	XEAREER EN	D (b) $y = 3z + 5$ and (b) $y = 3z + 5$	and $x = 0$
	(c) $y = z + 5$ and $x =$		(d) $y = -z + 5$ at	
28.	The number of spheres	of radii $\sqrt{2}$ such that the a	area of each circle of inte	ersection with the three coordinate
	planes is π is equal to			
	(a) 1	(b) 3	(c) 4	(d) 8
29.	If all blind horses are w	white then it follows that		
	(a) no blind horse is b	lack	(b) no brown ho	rse is blind
	(c) all white horses are	e blind	(d) all horses are	blind and white
30.	The set of all real root	s of the polynomial $P(x)$	$=x^4-x$ is	
	(a) $\{0, 1\}$		(b) the set of roo	ots of $(x^2 - x)$
	(c) a set having four e	lements	(d) an infinite set	

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

31.	Let $f, g: \mathbb{R} \to \mathbb{R}$ be polynomials. Then which of the following is false?
	(a) If $f(x) = g(x)$ for all $x \in [0,1]$ then $f = g$
	(b) If $f\left(\frac{1}{n}\right) = g\left(\frac{1}{n}\right)$ for all $n \in \mathbb{N}$ then $f = g$
	(c) If $f(x) \le g(x)$ for all $x \in \mathbb{R}$ then degree $(f) \le$ degree (g)
	(d) If $\{x \in \mathbb{R} : f(x) = 0\} = \{x \in \mathbb{R} : g(x) = 0\}$ then $f = g$
32.	If the graph of the function $y = f(x)$ is symmetrical about the line $x = a$, then
	(a) $f(x) = f(-x)$ (b) $f(x+a) = f(-x-a)$
	(c) $f(x+a) = f(a-x)$ (d) $f(2a-x) = f(x)$
33.	Consider the following two statements
	S_1 : There exists a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^2$ such that <i>T</i> is onto and
	$Ker(T) = \{(x_1, x_2, x_3, x_4, x_5) : x_1 + x_2 + x_3 = 0\}$
	S ₂ : For every linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ there exists $\mu \in \mathbb{R}$ such that $T - \mu I$ is invertible Which of the following statements are true?
	(a) Both S_1 and S_2 are true (b) Both S_1 and S_2 are false
34.	(c) S_1 is false but S_2 is true (d) S_1 is true but S_2 is false The set S_2 (d) S_1 is true but S_2 is false
54.	The set $S = \{-1, 1\}$ is the set of eigenvalues of the square matrix A, if
	(a) $A \pm I \neq 0$, A is a real, orthogonal and symmetric matrix
	(b) $A \pm I \neq 0$, A is a symmetric matrix
	(c) $A \pm I \neq 0$, $A^2 = I$
	(d) $A \pm I \neq 0$, A is a Hermitian matrix ENDEAVOUR
35.	If $A \neq 0$ is a 2 × 2 real matrix and suppose $A^2 \vec{v} = -\vec{v}$ for all vectors $\vec{v} \in \mathbb{R}^2$, then
	(a) -1 is an eigenvalue of A
	(b) the characteristic polynomial of A is $\lambda^2 + 1$
	(c) the map from $\mathbb{R}^2 \to \mathbb{R}^2$ given by $\vec{v} \to A\vec{v}$ is surjective
	(d) det $A = 1$
36.	Consider a linear system of equations $A\vec{x} = \vec{b}$ where A is a 3 × 3 matrix and $\vec{b} \neq 0$. Suppose the rank
	of the matrix of coefficients $A = (a_{ij})$ is equal to 2 then
	(a) there definitely exists a solution to the system of equations
	(b) there exists a non-zero column vector \vec{v} in \mathbb{R}^3 such that $A\vec{v} = \vec{0}$
	(c) if there exists a solution to the system of equations $A\vec{x} = \vec{b}$ then at least one equation is a linear
	combination of the other two equations
	(d) det $A = 0$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

Downloaded from https://pkalika.in/que-papers-collection/

6

- 37. Which of the following sets are closed and bounded?
 - (a) $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 3\}$ (b) $\{(x, y) \in \mathbb{R}^2 : x + y = 3\}$
 - (c) $\{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 3\}$ (d) $\{(x, y) \in \mathbb{R}^2 : \max\{|x|, |y|\} \le 3\}$
- 38. Let $\ell \in \mathbb{R}$, and (a_n) be a real sequence. Then which of the following conditions is equivalent to $(a_n) \rightarrow \ell$ as $n \rightarrow \infty$ '?
 - (a) $\forall_{e} > 0, \exists n_{0} \in \mathbb{N}$ such that $|a_{n} \ell| < 2 \in$ whenever $n \ge n_{0}$
 - (b) $\forall_{\epsilon} > 0, \exists n_0 \in \mathbb{N}$ such that $|a_n \ell| < \epsilon$ whenever $n \ge 2n_0$
 - (c) $\forall_{\epsilon} > 0, \exists n_0 \in 3\mathbb{N}$ such that $|a_n a_m| < 2 \in$ whenever $m, n \ge n_0$
 - (d) $\forall_{e} > 0, \exists n_{0} \in \mathbb{N}$ such that $|a_{n} a_{m}| < 2 \in$ whenever $m, n \ge n_{0}$
- 39. Which of the following series converge?

(a)
$$\sum_{n=1}^{\infty} \left(\frac{\log n}{n^{1+2\epsilon}} \right)$$
 (b)
$$\sum_{n=1}^{\infty} \left(\frac{(\log n)^2}{n^{1+2\epsilon}} \right)$$
 (c)
$$\sum_{n=1}^{\infty} \left(\frac{n^2+1}{n^3+n} \right)$$
 (d)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^n$$

40. Let
$$f(x) = \begin{cases} x^{3/2} (1-x)^{5/4}, & x \in (0,1) \\ 0, & x \in \mathbb{R} \setminus (0,1) \end{cases}$$
. Then

- (a) f is discontinuous at 0 and 1
- (b) f is continuous but not differentiable at 0 and 1
- (c) f is differentiable at 0 and 1 but f' is not continuous at 0 and 1
- (d) none of the above
- 41. The value of the integral $\int_{0}^{1} (x [x^2]) dx$ is equal to **EAVOUR**

(a)
$$\sqrt{2} + \sqrt{3} + 3$$
 (b) $\sqrt{2} + \sqrt{3} - 3$ (c) $\sqrt{2} - \sqrt{3} + 3$ (d) $\sqrt{2} - \sqrt{3} - 3$

42. Let f and g be real valued functions on [0, 1] which are Riemann integrable. Let $f(x) \le g(x)$ for all

$$x \in [0,1]$$
 and $f\left(\frac{1}{2}\right) < g\left(\frac{1}{2}\right)$. The inequality $\iint dx < \int g dx$ holds if

- (a) f and g are continuous in [0, 1]
- (b) f is continuous
- (c) g is continuous
- (d) f and g are continuous in a neighbourhood containing $\frac{1}{2}$
- 43. The general solution of y''' 4y'' + y' = 0 is
 - (a) $c_1 \sinh^2 x + c_2 \cosh^2 x + c_3$ (b) $c_1 \sinh 2x + c_2 \cosh 2x + c_3$
 - (c) $c_1 \sin 2x + c_2 \cos 2x + c_3$ (d) $c_1 e^{2x} + c_2 e^{-2x} + c_3$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(16)

Which of the following are solutions of the differential equation $yy'' - (y')^2 + 1 = 0$?

44.

- 7
- (a) x (b) sin(x+c) where c is an arbitrary constant (c) $\sinh(x+c)$ where c is an arbitrary constant (d) none of the above 45. Which of the following statements are true? (a) In a cyclic group of order n, if m divides n, then there exists a unique subgroup of order m. (b) A cyclic group of order *n* will have (n-1) elements of order *n* (c) In a cyclic group of order 24 there is a unique element of order 2 (d) In the group $(\mathbb{Z}_{12}, +)$ of integers modulo 12 the order of $\overline{5}$ is 12 Let G be a finite group with no nontrivial proper subgroups. Then which of the following statements are 46. true? (a) G is cyclic (b) G is abelian (c) G is of prime order (d) G is non-abelian 47. The equation $5X = 7 \pmod{12}$ has (a) a unique solution in \mathbb{Z} (b) a unique solution in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (c) a unique solution in the set $\{n, n+1, n+2, n+3, n+4, n+5, n+6, n+7, n+8, n+9, n+10, n+11\}$ (d) no solution in \mathbb{Z} Which of the following maps are ring homormorphisms? 48. (a) $f: \mathbb{Z}_4 \to \mathbb{Z}_{10}, f(x) = 5x$ (b) $f: \mathbb{Z}_5 \to \mathbb{Z}_{10}, f(x) = 5x$ (c) $f:\mathbb{Z}_4 \to \mathbb{Z}_{12}, f(x) = 3x REER ENDEAVOUR$ (d) $f:\mathbb{Z}_4 \to R, f(x) = xe$ where R is a ring with unity e 49. Let R be a finite commutative ring with no zero divisors then (a) R is a field (b) R has a unity (d) none of the above (c) characteristic of R is a prime number 50. Each question in a text has 4 options of which only one is correct. Ashok does not know which of the options are correct or wrong in 3 questions. He decides to select randomly the options for these 3 questions independently. The probability that he will choose at least 2 correctly is (a) more than 0.25(b) in the interval (0.2, 0.25)(c) in the interval (1/6, 0.2](d) less than 1/6

(17)

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2015

ANSWER KEY

PART-A

1.	(b)	2.	(b)	3.	(a)	4.	(d)	5.	(c)
6.	(a)		(d)		(c)	9.	(c)		()
11.	()	12.	(c)	13.	(a)	14.	(b)	15.	(a)
16.	(d)	17.	(a)	18.	(b)	19.	(c)	20.	(b)
21.	(a)	22.	(c)	23.	(c)	24.	(a)	25.	(d)
				РА	RT-B				
26.	(a)	27.		28.		29.	(a, b)	30.	(a, b)
31.	()	32.	(c, d)	33.	(c)	34.	(a, c)	35.	(b, c, d)
36.	(b, c, d)	37.	(a, c, d)	38.	(a, b, d)	39.	()	40.	(d)
41.	(b)	42.	()	43.	()	44.	(a, b, c)	45.	(a, c, d)
46.	(a, c, b)	47.	(b, c)	48.	(a, d)	49.	(a, b, c)	50.	(d)
			CAREER	EN	IDEAVO)UF	V		

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

Downloaded from https://pkalika.in/que-papers-collection/

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2014

Time : 2 Hours

Max. Marks: 100

Instructions:

- (*i*) There are a total of **50** questions in **Part-A** and **Part-B** together.
- (*ii*) There is a negative marking in Part-A. Each correct answer carries 1 mark and each wrong answer carries
 -0.33 mark. Each question in Part-A has only one correct option.
- (*iii*) There is **no negative** marking in **Part-B**. Each correct answer carries **3 marks**. In **Part-B** some questions have **more than** one correct option. All the correct options have to be marked in OMR sheet other wise **zero marks** will be credited.

PART-A

1. Let
$$0 \neq \overline{v} \in \mathbb{R}^2$$
. For $0 \le \theta < \pi$, let $A = \begin{pmatrix} \sin \theta & \cos \theta \\ -\cos \theta & \sin \theta \end{pmatrix}$. Then the angle between \overline{v} and $A\overline{v}$ is

(a)
$$\pi - \theta$$
 (b) θ (c) $\frac{\pi}{2} - \theta$ (d) θ

- 2. Let $A \in M_n(\mathbb{R})$. If $A^2 = -I$ (where *I* is the identity matrix), then (a) *n* is even (b) $A = \pm I$
 - (c) all the eigen values of A are in \mathbb{R} (d) A is a diagonal matrix
- 3. Let $\overline{f} = (u, v, w)$ be a vector field which is solinoidal. If curl(curl \overline{f}) = 0, then
 - (a) $\operatorname{curl}(\overline{f}) = 0$ (b) $\operatorname{grad}(\overline{f} \cdot \overline{f}) = 0$

(c)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 1$$
 (d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$

- 4. Let $\overline{v}, \overline{w} \in \mathbb{R}^3$. Then a sufficient condition for $\overline{v} \times \overline{w} \neq 0$, is
 - (a) both \overline{v} and \overline{w} are non-zero
 - (b) dimension of the linear span of $\{\overline{v}, \overline{w}, \overline{v} \times \overline{w}\}$ is ≥ 2
 - (c) either \overline{v} or \overline{w} is non-zero
 - (d) none of the above

2

5.	Let $f : \mathbb{R} \to \mathbb{R}$ be a func	tion such that $ f(x) \le $.	x^2 for all $x \in \mathbb{R}$. Then				
	(a) f is continuous but no	ot differentiable at $x = 0$					
	(b) f is differentiable at $x = 0$						
	(c) f is an increasing func	tion					
	(d) f is a decreasing func	tion					
6.	The number of points of c	continuity of the function	$f = \begin{cases} x^2 - 1 & \text{if } x \text{ is irrational,} \\ 0 & \text{if } x \text{ is rational} \end{cases}$				
	(a) 0	(b) 1	(c) 2 (d) infinite				
7.	The number of words form appears in any such arran		rs L, O, C, K, U, P such that neither 'LOCK' nor 'UP'				
	(a) $6! - 4! - 2! + 1$	(b) $6! - 5! - 3! + 2$	(c) $6!-5!-3!+1$ (d) $6!-2!+1$				
8.	The domain of the real-va	function $f(x) = -\frac{1}{2}$	$\frac{1}{1} + \frac{1}{1}$ is				
		$\sqrt{\lambda}$	$x+1 \sqrt{6}-x$				
	(a) $(-\infty,\infty)\setminus\{-1,6\}$		(b) R				
	(c) $(-\infty, 6) \cap (-1, \infty)$		(d) (-1, 6)				
9.	Let G be a group with id	entity element <i>e</i> , and N b	be a normal subgroup. Let the index of N is G be 12,				
	i.e., $[G:N] = 12$. Then						
	(a) $x^{12} = e$ for all $x \in N$						
	(b) $x^{12} = e$, the identity of	element in G , for all $x \in G$	G				
	(c) $x^{24} \in N$ for all $x \in C$	5					
	(d) none of the above	AREER END	EAVOUR				
10.	If $\{a_n\}$ is a sequence cor	averging to <i>l</i> . Let $b_n = \begin{cases} a \\ a \end{cases}$	$\{b_{2n}, \text{ if } n \text{ is odd,} \}$. Then the sequence $\{b_n\}$ $\{b_n, a_{3n}, a_n, a_n \text{ if } n \text{ is even} \}$.				
	(a) need not converge		(b) should converge to 0				
	(c) should converge to 2	<i>l</i> or to 3 <i>l</i>	(d) should converge to l				
11.	Two fair dice 1 red and 1 the two dice is a prime m	-	bability that the sum of the numbers that show up on				
	(a) 7/18	(b) 7/36	(c) 15/36 (d) 29/72				
12.	Let V be a vector space of	of dimension n over \mathbb{R} and	Ind $\{v_1,, v_n\}$ be a basis of V. Let σ be a permutation				
	of the numbers $\{1,, n\}$,	i.e., $\sigma: \{1,, n\} \to \{1,, n\}$	n } is a bijective map. Then the linear transformation				
	defined by $T(v_i) = v_{\sigma(i)}$ is	5					
	(a) 1-1 but not onto		(b) onto but not 1-1				
	(c) neither 1-1 nor onto		(d) an isomorphism on V				

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

13.	Let $\{x_n\}$ and $\{y_n\}$ be two sequences in \mathbb{R} such that $\lim_{n \to \infty} x_n = 2$ and $\lim_{n \to \infty} y_n = -2$. Then
	(a) $x_n \ge y_n$ for all $n \in \mathbb{N}$
	(b) $x_n^2 \ge y_n$ for all $n \in \mathbb{N}$
	(c) there exists an $m \in \mathbb{N}$ such that $ x_n \le y_n^2$ for all $n > m$
	(d) there exists an $m \in \mathbb{N}$ such that $ x_n = y_n $ for all $n > m$
14.	Let $\{x_n\}$ be an increasing sequence of irrational numbers in [0, 2]. Then
	(a) $\{x_n\}$ converges to 2 (b) $\{x_n\}$ converges to $\sqrt{2}$
	(c) $\{x_n\}$ converges to some number in [0, 2] (d) $\{x_n\}$ may not converge
15.	Let X be a set. For $A \subset X$, let $A^c = X \setminus A$. The correct statement for $A, B \subset X$ is
	(a) $A \setminus B = B^c \setminus A^c$, always
	(b) If $A \setminus B = B^c \setminus A^c$ then $A \subset B$ or $B \subset A$
	(c) If $A \setminus B = B^c \setminus A^c$ then $A \cap B = \phi$
	(d) If $A \setminus B = B^c \setminus A^c$ then $A = X$ or $B = X$
16.	The value of $\int_{0}^{2\sqrt{\pi}} \pi - x^2 dx$ is
	(a) $2\pi\sqrt{\pi}$ (b) $2\sqrt{\pi}$ (c) 2π (d) none of the above
17.	Let $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and ϕ be a homogeneous function with degree 3. Then div $(\overline{r}\phi)$ is
	(a) 3φ (Δ(b) 6φ R ENDE(c) 9φ UR) (d) 27φ
18.	Let $f:[-2,5] \to \mathbb{R}$ be the function given by $f(x) = x^6 + 3x^2 + 60$. Then
	(a) f is a bounded function
	(b) there exists a $c \in [-2,5]$ such that $f(c) = 0$
	(c) f is increasing(d) f is decreasing
19.	Write the logical negation of the following statement about a sequence $\{a_n\}$ of real numbers:
	"For all $n \in \mathbb{N}$ there exists an $m \in \mathbb{N}$ such that $m > n$ and $a_m \neq a_n$
	(a) There exists an $n \in \mathbb{N}$ such that $a_m = a_n$ for all $m > n$
	(b) For all $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $m > n$ and $a_m = a_n$
	(c) There exists $n \in \mathbb{N}$ such that $a_m \neq a_n$, for all $m > n$
	(d) There exists $n \in \mathbb{N}$ such that $a_m = a_n$, for all $m \le n$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

20. Let G be a group of order 6. Then (a) G has 2 possibilities (upto isomorphism) (b) G is cyclic (c) G is abelian but not cyclic (d) there is not sufficient information to determine G The value of $\int_{0}^{1} (1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n x^n}{n!} + \dots) e^x dx$ is 21. (a) 0 (b) *e* (c) 1 (d) not defined The general solution of the differential equation y''' - 5y'' + 8y - 4 = 0 is 22. (b) $e^{2x} + xe^{2x} - e^{x}$ (a) $ae^{2x} - bxe^{2x} - ce^{x}$ (d) $ae^{x} + b(e^{2x} + xe^{2x})$ (c) $ae^{2x} + be^{x}$ The number of common tangents to the spheres $x^2 + y^2 + z^2 - 2x - 4y + 6z + 13 = 0$ and 23. $x^{2} + y^{2} + z^{2} - 6x - 2y + 2z - 5 = 0$ is (a) 0 (b) 1 (c) 3 (d) 1 Let $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x > 0\\ \cos x, & \text{if } x \le 0 \end{cases}$. Then, 24. (a) f is continuous but not differentiable at 0 (b) f is differentiable at 0 (c) f is not continuous at 0 (d) f is neither integrable nor continuous 0 The least positive integer n such that every integer is greater than n is of the form 2a+11b for some positive 25. integers a and b is (a) 13 (b) 23 (c) 35 (d) 44

PART-B

- 26. Let $f(x) = \max\{\sin x, \cos x\}$, for $x \in \mathbb{R}$. Then
 - (a) *f* is discontinuous at $(2n+1)\pi/4, n \in \mathbb{Z}$
 - (b) f is continuous everywhere
 - (c) f is differentiable everywhere
 - (d) *f* is differentiable everywhere except at $(4n+1)\pi/4, n \in \mathbb{Z}$

27.
$$\lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{3n} \right) =$$

(a) 0 (b) $\log 2$ (c) $\log 3$ (d) ∞

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

28.	Let $f: \mathbb{R} \to \mathbb{R}$ such that	$f(f(x))^2 = 1 + \int_0^x f(t)dt$. Then $f(x) =$					
	(a) $\frac{x}{2} - 1$	(b) $\frac{x}{2} + 1$	(c) $\frac{x}{2}$	(d) $\frac{x}{2} \pm 1$				
29.	Let $A \neq \pm I$ be a 2 × 2 m correct	natrix over $\mathbb R$ whose s	quare is <i>I</i> . Then w	hich of the following statements are				
	(a) A is a diagonal matrix	X	(b) sum of d	iagonal elements of A is 0				
	(c) there are infinitely ma	my such matrices	(d) 1 must b	e an eigen value				
30.	Let $f:(0,\pi/2) \to \mathbb{R}$ given by $f(x) = \sin x + \cos 2x$ is							
	(a) increasing in $(0, \pi/4)$)	(b) decreasin	ng in $(0, \pi/4)$				
	(c) has a minimum in $(0, 0)$	$(\pi / 4)$	(d) has a ma	ximum in $(0, \pi/4)$				
31.	The numbers 0, 1, 2,, 9 greater than 10 ⁹ . What is			ns) in a row to get a 10-digit number and is a multiple of 5?				
	(a) $\frac{8 \times 8!}{9 \times 9!}$	(b) $\frac{2 \times 9!}{9 \times 9!}$	(c) $\frac{2 \times 9!}{10!}$	(d) $\frac{8 \times 8!}{9 \times 9!} + \frac{9!}{9 \times 9!}$				
32.	Let f, g be Riemann int	tegrable on $[a,b]$. De	fine, $h(x) := \min(x)$	$f(x), g(x)$ and $l(x) := \int_{a}^{x} f(t)dt$ for				
	$x \in [a, b]$. Then							
	(a) h need not be Riemann integrable but l always is							
	 (a) <i>h</i> need not be Riemann integrable but <i>h</i> always is (b) <i>l</i> need not be Riemann integrable but <i>h</i> always is (c) <i>h</i>, <i>l</i> are Riemann integrable, always. 							
	(d) whenever h and l are	Riemann integrable, \int_{a}^{x}	$h(t)dt \le l(x)$ for a	all $x \in (a,b)$				
33.	Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Which of the following are sufficient conditions for <i>f</i> to h fixed point in [0, 1]?							
	(a) $f(0) = f(1)$		(b) $f(1) < 0$	< <i>f</i> (0)				
	(c) $0 < f(1) < f(0)$		(d) $f(0) < 0$	< 1 < f(1)				
34.	Let $x_n \in \mathbb{R}$ such that $\sum_{n=1}^{\infty}$	$x_n = -5$. Then						
	(a) $\lim_{n\to\infty} x_n = 0$							
	(b) there exists an $m \in \mathbb{N}$	such that $x_n \leq 0$ for	all $n > m$					

- (c) $\sum_{n=1}^{\infty} |x_n| = 5$
- (d) $|x_n| \le 5$ for all $n \in \mathbb{N}$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

Downloaded from https://pkalika.in/que-papers-collection/

(22)

- 35. Which of the following series are convergent?
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n + \frac{1}{2}}{n}$ (b) $\sum_{n=1}^{\infty} e^{-n} n^2$
 - (c) $\sum_{n=1}^{\infty} \frac{1+2+\ldots+n}{1^2+2^2+\ldots+n^2}$ (d) $\sum_{n=1}^{\infty} \frac{1.2.3}{4.5.6} + \frac{7.8.9}{10.11.12} + \ldots$

36. In a class with 200 students, all the students know either Hindi, English or Telugu (and no other language). Of them, 100 know English, 150 know Telugu, 80 know Hindi, 50 know both Telugu and Hindi, 40 know only Telugu and no other language, 10 know all the three languages. Which of the following statements are correct

- (a) 30 students know only English and no other language
- (b) 110 know atleast two languages
- (c) 60 know Hindi but not English
- (d) 110 know exactly two languages
- 37. For a group G, which of the following statements are true?
 - (a) If $x, y \in G$ such that order of x is 3, order of y is 2 then order of xy is 6.
 - (b) If every element is of finite order in G then G is a finite group
 - (c) If all subgroups are normal in G then G is abelian
 - (d) If G is abelian then all subgroups of G are normal
- 38. Let V be the vector space of all polynomials with coefficients in \mathbb{R} , i.e., $V = \mathbb{R}[X]$. Then which one of the following $T: V \to V$ are not linear transformations: for f(X) in V, define T(f(x)) as
 - (a) $f(X^2)$ (b) $f(X)^2$ (c) $X^2 f(x)$ (d) $f(X^2+1)$
- 39. Let S, T and U be three sets of horses. Let U be the set of all white horses. If all the horses in the set S are white and if no horse in the set T is black, then it necessarily follows that
 - (a) S and T are disjoint **CARCER CODE** (b) $S \subset U$
 - (c) $U \subset T$ (d) $S \cap T = U$
- 40. For the real number system, which of the following statements are true:
 - (a) let $x, y \in \mathbb{R}$ such that 0 < x < y then there exists an $n \in \mathbb{N}$ such that y < nx
 - (b) let $x, y \in \mathbb{R}$ such that x < y then there exists an $r \in \mathbb{Q}$ such that x < r < y
 - (c) let $x, y \in \mathbb{R}$ such that x < y then there exists an $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that $x < \alpha < y$
 - (d) For $y \in \mathbb{R}$ such that y > 0 there exists an $n \in \mathbb{N}$ such that $n \le y < n+1$
- 41. The value of α such that the sum of the squares of the roots of $x^2 (\alpha 2)x \alpha 1$ is minimum is
 - (a) 0 (b) 1 (c) $1/\sqrt{2}$ (d) 4
- 42. An integrating factor for $ydx + (x 2x^2y^3)dy = 0$ is
 - (a) $\frac{1}{x^2 + y^2}$ (b) $\frac{1}{x + y}$ (c) $e^{\frac{1}{x^2 y^2}}$ (d) $\frac{1}{x^2 y^2}$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

Downloaded from https://pkalika.in/que-papers-collection/

Let $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$, which of the following statements are true: 43. (a) There exists a non constant vector valued function \overline{f} such that \overline{f} is both irrotational and solinoidal (b) div(curl($\overline{r} | \overline{r} |^2) = 0$ (c) $\operatorname{curl}(\operatorname{grad}(|\overline{r}|^6)) = 0$ (d) If \overline{f} is solinoidal then div $(|\overline{r}|^2 \overline{f}) = 2\overline{r} \cdot \overline{f}$ Let B be the unit sphere in \mathbb{R}^3 . The value of $\iint_{\mathbb{R}} (x^2 + 2y^2 - 3z^2) dS$ is 44. (b) $\frac{4}{3}\pi$ (c) 6π (a) 4π (d) none of the above 45. Let $A, B \subset [0,1]$ be two uncountable sets. Which of the following are false statements (a) If $A \cap B = \phi$, then either $\sup(A) \le \inf B$ or $\sup B \le \inf A$ (b) If $A \cap B = \phi$, then $[0,1] \setminus (A \cap B)$ is countable (c) If $\inf A = \inf B$ and $\sup A = \sup B$, then $A \cap B \neq \phi$ (d) If $A \subset B$, then B\A is countable 46. The value of λ such that the plane $2x - y + \lambda z = 0$ is a tangent plane to the sphere $x^{2} + y^{2} + z^{2} - 2x - 2y - 2z + 2 = 0$ is (a) 4 (c) 2 (b) 1 (d) -247. The distance between the straight lines $\frac{x}{2} = \frac{y-1}{1} = \frac{z+1}{1}$ and $\frac{x+1}{2} = \frac{y+1}{2} = \frac{z+1}{2}$ is (a) $\frac{\sqrt{21}}{3}$ (b) $\frac{21}{2}$ (c) 0 (d) impossible to find from the given data 48. Let V be a 3-dimensional vector space over \mathbb{C} . Let $T: V \to V$ be a linear transformation whose characteristic polynomials is (X-2)(X-1)(X+1). Let B be a basis of V. Then which of the following are correct?

(a) The matrix of T w.r.t. B is conjugate to
$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) The matrix of T⁻¹ w.r.t. B is conjugate to
$$\begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(25)

- (c) The matrix of T w.r.t. B is conjugate to $\begin{bmatrix} 2 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (d) The matrix of T w.r.t. B is conjugate to $\begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 49. Let S be the group of all permutation of the letters U, N, I, V, E, R, S, I, T, Y such that the letter 'I' is
 - (a) There exists elements of order 21 and of order 11

fixed. Then

- (b) There exists an element of order 21 and no element of order 11
- (c) There is an element of order 11 and no element of order 21
- (d) There are no elements of order 11 or or order 21

50. The least positive integer r such that $\begin{pmatrix} 2014 \\ r \end{pmatrix}$ is a multiple of 10 is (a) 5 (b) 10 (c) 11 (d) 14

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(26)

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2014

ANSWER KEY

PART-A

		-		_		_	<i>a</i>)	_				
1.	(c)	2.	(a)	3.	(d)	4.	(b)	5.	(b)			
6.	(c)	7.	(b)	8.	(d)	9.	()	10.	(a)			
11.	(c)	12.	(d)	13.	(c)	14.	(a)	15.	(a)			
16.	(b)	17.	(b)	18.	(a)	19.	(a)	20.	(a)			
21.	(c)	22.	(a)	23.	()	24.	(a)	25.	(b)			
	PART-B											
26.	(b, d)	27.	(c)	28.	(a, b, d)	29.	(b, c, d)	30.	(d)			
31.	(d)	32.	(c)	33.	(b, d)	34.	(a)	35.	(b)			
36.	(c, d)	37.	(d)	38.	(b)	39.	(b)	40.	(a, b, c)			
41.	(b)	42.	(d)	43.	(a, b, c, d)	44.	(d)	45.	(a, b, c, d)			
46.	()	47.		48.	(a, b)	49.	(d)	50.	()			
				CN								
LARCCR CINDCAVOUR												

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2013

Time : 2 Hours

Max. Marks: 100

Instructions:

- (*i*) There are a total of **50** questions in **Part-A** and **Part-B** together.
- (*ii*) There is a negative marking in Part-A. Each correct answer carries 1 mark and each wrong answer carries
 -0.33 mark. Each question in Part-A has only one correct option.
- (*iii*) There is **no negative** marking in **Part-B**. Each correct answer carries **3 marks**. In **Part-B** some questions have **more than** one correct option. All the correct options have to be marked in OMR sheet other wise **zero marks** will be credited.

PART-A

1. We say that a sequence (a_n) does NOT converge to l if

(a)
$$\forall \in > 0, \forall n_0 \in \mathbb{N}, \forall n \ge n_0 \text{ we have } |a_n - l| > \epsilon$$

- (b) $\forall \in > 0, \forall n_0 \in \mathbb{N}, \exists n \ge n_0 \text{ such that } |a_n l| > \in$
- (c) $\exists \in >0, \forall n_0 \in \mathbb{N}, \exists n \ge n_0 \text{ such that } |a_n l| \ge \epsilon$
- (d) $\exists \epsilon > 0, \forall n_0 \in \mathbb{N}, \forall n \ge n_0$ we have $|a_n l| > \epsilon$
- 2. Consider a sequence (a_n) of positive numbers satisfying the condition $a_n a_{n+2} \le a_{n+1}^2, \forall n \in \mathbb{N}$ then (a_n) is a
 - (a) convergent sequence if $a_1 \neq 2a_2$
 - (b) monotonically increasing sequence if $a_1 \neq 2a_2$
 - (c) convergent sequence if $a_1 = 2a_2$
 - (d) monotonically increasing sequence if $a_1 = 2a_2$

3. The sum of the series
$$\sum_{n=1}^{\infty} [(n+1)^{\frac{1}{5}} - n^{\frac{1}{5}}]$$
 is

- (a) less than -1
- (c) greater than -1 but less than 2

(b) equal to -1(d) none of the above

4. Let
$$S = \{x \in \mathbb{R} \mid x^2 \le 5\} \cap \mathbb{Q}$$
. Which of the following statements is true about S' ?
(a) S is bounded above the sup $S \in \mathbb{Q}$
(b) S is bounded above and sup $S \in \mathbb{R} - \mathbb{Q}$
(c) S is a closed interval
(d) S is an open interval
5. The value of $\lim_{x \to 0} \frac{e^{1/(x)} - e^{1/(x)}}{e^{1/(x)} + e^{1/(x)}}$ is
(a) 0 (b) 1 (c) -1 (d) none of the above
6. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} -x + 3, & x \in \mathbb{Q}, \\ x^2 - 6x + 9, & x \notin \mathbb{Q} \end{cases}$. The set of all points at which f
is continuous is
(a) $\{2, 3\}$ (b) $\{3\}$ (c) $\mathbb{R} - \{2, 3\}$ (d) $\mathbb{R} - \{3\}$
7. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \begin{cases} \sin x, & x \ge 0, \\ 1 - \cos x, & x < 0 \end{cases}$. Which of the following statements
is true about f ?
(a) f is differentiable
(b) f is continuous but NOT differentiable
(c) f is discontinuous
8. Let $f : [0, 1] \to \mathbb{R}$ $g : [0, 1] \to \mathbb{R}$ given by $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [0, 1] \\ 0, & x \notin \mathbb{Q} \cap [0, 1] \\ 0, & x \notin \mathbb{Q} \cap [0, 1] \end{cases}$ and $g(x) = \begin{cases} 0, & x \in \mathbb{Q} \cap [0, 1] \\ 1, & x \notin \mathbb{Q} \cap [0, 1] \end{cases}$, then
(b) f is Riemann integrable but f is NOT Riemann integrable
(c) g is Riemann integrable but f is NOT Riemann integrable
(d) both f and g are NOT Riemann integrable
(e) g is Riemann integrable but f is NOT Riemann integrable
(f) g is R are an integrable but f is NOT Riemann integrable
(g) $\lim_{x \to \infty} \sum_{x \neq x} \frac{2x}{x^2 x^2 + n^2} = \frac{2}{x^2 +$

CAREER ENDEAVOUR

- 11. The general solution of $(D^4 + I)^2 y = 0$ is
 - (a) $C_1 \sin x + C_2 \cos x + C_3 e^x + C_4 e^{-x}$
 - (b) $C_1 x \sin x + C_2 x \cos x + C_3 e^x + C_4 e^{-x}$
 - (c) $(C_1 + C_2 x) \sin x + (C_3 + C_4 x) \cos x + C_5 e^x + C_6 e^{-x}$
 - (d) $(C_1 + C_2 x) \sin x + (C_3 + C_4 x) \cos x + (C_5 + C_6 x) e^x + (C_7 + C_8 x) e^{-x}$

12. Consider three different planes $a_{11}x + a_{12}y + a_{13}z = d_1$, $a_{21}x + a_{22}y + a_{23}z = d_2$ and $a_{31}x + a_{32}y + a_{33}z = d_3$. Let $A = (a_{ij})$, $1 \le i, j \le 3$. Which of the following conditions necessarily implies that there exists a unique point of intersection of all three planes?

- (a) det(A) = 0 (b) $det(A) \neq 0$
- (c) $\operatorname{Trace}(A) = 0$ (d) $\operatorname{Trace}(A) \neq 0$

13. The number of planes containing both the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x-2}{-1} = \frac{y-4}{-5} = \frac{z-6}{-1}$ is

- (a) 0 (b) 1
- (c) more than 1 but finitely many
- 14. Let $A = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 22 \\ 0 & 1/7 & \pi \end{vmatrix}$, then det(A) is
 - (a) zero (b) a non-zero rational number

(d) infinite

- (c) an irrational number less than 1 (d) an irrational number greater than 1
- 15. Consider the vector space \mathbb{R}^3 over \mathbb{R} and $A, B \subset \mathbb{R}^3$ such that $0 \notin A \cup B$. Let the number of elements in A and B are 4 and 2 respectively, then
 - (a) both A and B are linearly dependent sets
 - (b) A is linearly dependent set but B is linearly independent set
 - (c) both A and B are linearly independent sets
 - (d) none of the above is a true statement
- 16. The number of group homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{13} is
 - (a) 0 (b) 1
 - (c) more than 1 but finitely many (d) infinite
- 17. The centre of \mathbb{Z}_{33} is
 - (a) $\{0\}$ (b) \mathbb{Z}_3 (c) \mathbb{Z}_{11} (d) \mathbb{Z}_{33}

(30)

				4					
18.	Let G be a group and H	be a subgroup of G.	Which of the following	statements is true?					
	(a) If H is a normal subgroup of G then $gH = Hg, \forall g \in G$								
	(b) If H is a normal subgroup of G then $gH \neq Hg$, for some $g \in G$								
	(c) If $gH = Hg$, for some $g \in G$ then H is a normal subgroup of G								
	(d) If $gH \neq Hg$, for some $g \in G$ then H is a normal subgroup of G								
19.									
	(a) 1	(b) 2	(c) 3	(d) 4					
20.	If $x \neq e, y \neq e$ are eleme	ents in a group G sucl	h that the order of x is 2	and $x^{-1}yx = y^2$ then the order of					
	y is								
	(a) 1	(b) 2	(c) 3	(d) 4					
21.	In the ring $(\mathbb{Z}, +, .)$ the	set $\{12u + 30v u, v \in$	\mathbb{Z} is the same as $n\mathbb{Z}$	for $n =$					
	(a) 6	(b) 4	(c) 3	(d) 2					
22.	Let S be the sphere with	n center at the origin	and radius 1. Let \overline{f} is a	a vector field given by					
	$\overline{f}(x, y, z) = (z - 2xyz)\hat{i}$	$+9x^2yz^2\hat{i}+(yz^2-3x^2)$	$(2^{7^3})\hat{k}$. If \hat{n} is the out	ward normal then, the value of					
			~)	,					
	$\iint_{S} \overline{f} \cdot \hat{n} dS =$								
	(a) 0	(b) $\frac{4}{3}\pi$	(c) π	(d) $\frac{4}{3}\pi^3$					
• •									
23.	If ϕ is a real valued smooth function and \overline{f} is a vector valued smooth function on \mathbb{R}^3 . then div $(\phi \operatorname{Curl} \overline{f}) =$								
	(a) $\nabla \phi \cdot \operatorname{Curl} \overline{f}$		(b) $\nabla(\overline{f}\cdot\nabla\phi)$						
	(c) $\nabla \phi \cdot \operatorname{Curl} \overline{f} + \nabla (\overline{f} \cdot \nabla \phi)$		(d) none of the	above					
24.			er boys in a family with	5 children. Assume that births are					
	independent trials and probability of a boy is equal to $1/2$.								
	(a) 0	(b) $\frac{1}{2}$	(c) $\frac{15}{32}$	(d) $\frac{17}{32}$					
	(a) 0	(b) $\frac{1}{2}$	(c) $\frac{1}{32}$	(d) $\frac{1}{32}$					
25.	Consider two boxes numbered Box 1 and Box 2. Let Box 1 contains 5 red balls and 4 black balls Box								
	2 contains 10 red balls and 17 black balls. Consider a random experiment of choosing a box, picking a ball from it. What is the probability that the color of the ball is red?								
	(a) $\frac{25}{54}$	(b) $\frac{50}{54}$	(c) $\frac{15}{36}$	(d) $\frac{15}{17}$					
	51	57	50	1 /					

(31)

PART-B

- 26. Consider the statement "There is a train in which every compartment has at least one passenger without the ticket". Negation of this statement is
 - (a) There is a train in which every compartment has at least one passenger with the ticket
 - (b) There is a train in which every passenger of every compartment has the ticket
 - (c) Every train has a compartment in which every passenger has the ticket
 - (d) In every train every passenger in every compartment has the ticket
- 27. Consider a sequence (a_n) of real numbers. Which of the following conditions imply that (a_n) is convergent?
 - (a) $|a_{n+1}-a_n| < \frac{1}{n}, \forall n \in \mathbb{N}$
 - (b) $|a_{n+1} a_n| < \frac{1}{3^n}, \forall n \in \mathbb{N}$
 - (c) $a_n > 0, \forall n \in \mathbb{N}$ and a_n is monotonically increasing
 - (d) $a_n > 0, \forall n \in \mathbb{N}$ and a_n is monotonically decreasing
- 28. Which of the following series are convergent?

(a)
$$\sum_{n=0}^{\infty} \frac{\log n}{n^{3/2}}$$
 (b) $\sum_{n=0}^{\infty} \frac{n^2}{n!}$ (c) $\sum_{n=0}^{\infty} \frac{1}{n \log n}$ (d) $\sum_{n=0}^{\infty} \frac{e^n}{n^{100}}$

29. Which of the following statements are true?

(a) If $A \subset \mathbb{Q}$ such that $\mathbb{Q} - A$ is finite then A is dense in \mathbb{R}

- (b) There exists $A \subset \mathbb{Q}$ such that $\mathbb{Q} A$ is finite and A is dense in \mathbb{R}
- (c) There exists a pair of disjoint subsets of Q such that both of them are dense in \mathbb{R}
- (d) None of the above is a true statement

30. Consider
$$f : \mathbb{R} \to \mathbb{R}$$
 given by $f(x) = \sin^3(|x|)$, then $f'(0)$

- (a) is equal to -1 (b) is equal to 0
- (c) is equal to 1 (d) does not exist
- 31. Consider the following two statements

 S_1 : If $f:[0,1] \rightarrow [0,1]$ is continuous then $\exists x_0 \in [0,1]$ such that $f(x_0) = x_0$

- S_2 : There exists a continuous function $f:[0,1] \rightarrow [0,1] \left\{\frac{1}{2}\right\}$ such that f is on to
- (a) Both S₁ and S₂ are true
 (b) S₁ is true but S₂ is false
 (c) S₂ is true but S₁ is false
 (d) Both S₁ and S₂ are false

32. Consider the following two statements.

$$S_1 : \int_0^{\pi/2} \frac{\sin x}{x} dx \text{ exists}$$
$$S_2 : \int_0^1 \frac{x}{\log x} dx \text{ exists}$$

- (a) Both S_1 and S_2 are true (b) S_1 is true but S_2 is false
- (c) S_2 is true but S_1 is false

(d) Both
$$S_1$$
 and S_2 are false

33. Solution of
$$(x^2 + y^2)xdx + (x^2 + y^2)ydy + 2xy(xdy - ydx) = 0$$
 is

(a)
$$\log(\sqrt{x^2 + y^2}) - \frac{x^2}{x^2 + y^2} = C$$
 (b) $\log(x^2 + y^2) - \frac{x^2}{x^2 + y^2} = C$

(c)
$$\log(\sqrt{x^2 + y^2}) - \tan^{-1}\frac{y}{x} = C$$
 (d) $\log(x^2 + y^2) - \tan^{-1}\frac{y}{x} = C$

34. The general solution of $(D^2 - 1)y = x^2 + e^{-x}$ is

(a)
$$C_1 e^x + C_2 e^{-x} - \left[\frac{1}{4}(2x+1)e^{-x} + x^2 + 2\right]$$

(b) $C_1 \sin x + C_2 \cos x - \left[\frac{1}{4}(2x+1)e^{-x} + x^2 + 2\right]$
(c) $C_1 e^x + C_2 e^{-x} - \left[\frac{1}{2}e^{-x} + x^2 + 2\right]$
(d) $C_1 \sin x + C_2 \cos x - \left[\frac{1}{2}e^{-x} + x^2 + 2\right]$

35. The value of k such that the lines $\frac{x-1}{k} = \frac{y-1}{4} = \frac{z-2}{3}$ and $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z}{3}$ are coplanar is

(a)
$$-1$$
 (b) 1 (c) -2 (d) 2
Consider a plane which is at a distance *n* from the origin $\Omega = (0, 0, 0)$. Let Λ B

- 36. Consider a plane which is at a distance p from the origin O = (0, 0, 0). Let A, B, C be the points of intersection of that plane with the co-ordinate axis. The locus of the centre of the sphere passing through O, A, B and C is
 - (a) $\frac{2}{x^2} + \frac{2}{y^2} + \frac{2}{z^2} = \frac{1}{p^2}$ (b) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{4}{p^2}$ (c) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{2}{p^2}$ (d) $\frac{4}{x^2} + \frac{4}{y^2} + \frac{4}{z^2} = \frac{1}{p^2}$

37. Consider the circle C which is the intersection of the sphere $x^2 + y^2 + z^2 - x - y - z = 0$ and the plane x + y + z = 1. The radius of the sphere with centre at the origin, containing the circle C is (a) 1 (b) 2 (c) 3 (d) 4

- 38. Which of the following statements are true?
 - (a) All groups of order 4 are abelian (b) All groups of order 6 are abelian
 - (c) $73^{12} 1$ is divisible by 7 (d) A subgroup of a cyclic group must be cyclic

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(33)

39.	Consider the quotient group $G = \frac{\mathbb{Q}}{\mathbb{Z}}$ under addition.	Consider the quotient group $G = \frac{\mathbb{Q}}{\mathbb{Z}}$ under addition. Which of the following statements about G are true?						
	(a) G is a finite group(c) G has no non-trivial proper subgroups	(b) In G every element has a finite order (d) G is NOT a cyclic group						
40.	Let $G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle a \in \mathbb{Q} - \{0\}, b \in \mathbb{Q} \right\}, U = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \middle a \in \mathbb{Q} - \{0\}, b \in \mathbb{Q} \right\}$	$b \in \mathbb{Q}$, $D = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} a \in \mathbb{Q} - \{0\} \right\}$						
	Which of the following statements are true?							
	(a) G,U,D are all groups under multiplication	(b) D is a normal subgroup of G						
	(c) U is a normal subgroup of G	(d) For every matrix $A \in U$, $ADA^{-1} \subseteq D$						
41.	Let $X = \{1, 2, 3, 4, 5\}, P(X)$ be the power set of X.	Consider the ring $R = (P(X), \Delta, \cap)$, for subsets A						
	and B of X, $A\Delta B = (A \cup B) - (A \cap B)$. Which of the following statements are true about R?							
	(a) R is a commutative ring with unity							
	(b) R is field							
	(c) Every element in R has 'additive' order 2.							
	(d) Every element in R has 'multiplicative' order 2							
42.	Consider the ring $R = (\mathbb{Z}_{60}, +, .)$. Which of the follo	wing statements are true about R?						
	 (a) There are no maximal ideals in R (a) There are ten non zero proper ideals in R 	(b) There are three maximal ideals in R (d) All non-zero ideals in R are maximal						
12	(c) There are ten non-zero proper ideals in R	(d) All non-zero ideals in R are maximal a binary operation * on π by $a + b = 0$ $\forall a + z$						
43.	Consider the group \mathbb{Z} under addition +. Define the binary operation * on \mathbb{Z} by $a * b = 0, \forall a \cdot b \in \mathbb{Z}$. Which of the following statements are true about R?							
	(a) $(\mathbb{Z}, +, .)$ is a commutative ring with unity							
	(c) Every additive subgroup of \mathbb{Z} is an ideal	AVOUR						
	(d) The only ideals in \mathbb{Z} are of the form $n\mathbb{Z} = \{nx \mid x \in \mathbb{Z}\}$							
44.	Let A be a non-singular 3×3 matrix with real entri							
	(a) λ is an eigenvalue of both $P^{-1}AP, PAP^{-1}$ where det $(P) \neq 0$							
	(b) $1+\lambda$ is an eigenvalue of $I+A$							
	(c) if det(A) <1 then $ \lambda < 1$							
	(d) if μ is an eigen value of A^{-1} then $\mu\lambda = 1$							
45.	Let A be a 2 \times 2 real matrix. Let the sum of the entries in each row of A be qual to 2. Which of the following							
	statements is true?							
	(a) 0 is always an eigen value of A	(b) 0 and 2 are always eigenvalues of A						
	(c) 2 is always an eigenvalues of A	(d) None of the above						

- 46. Let A, B be a 4×4 matrices. Denote rank of a matrix A, B by $\rho(A), \rho(B)$ and adjoint of A by adj(A). Which of the following statements are true?
 - (a) $\rho(A+B) \le \rho(A) + \rho(B)$ (b) $\rho(A-B) \le \rho(A) \rho(B)$
 - (c) $\rho(AB) \le \rho(A)\rho(B)$ (d) If $\rho(A) = 2$ then adj $(A) = O_{4\times 4}$
- 47. Consider the vector space $V = \mathbb{R}^3(\mathbb{R})$ and $B = \{v_1, v_2\} \subset V, 0 \notin B$. Which of the following statements are true?
 - (a) If B is a linearly dependent set then $\exists (\alpha_1, \alpha_2) \neq (0, 0)$ such that $\alpha_1 v_1 + \alpha_2 v_2 = 0$
 - (b) If B is a linearly dependent set then $\exists (\alpha_1 \cdot \alpha_2)$ such that $\alpha_1 \neq 0$, $\alpha_2 \neq 0$ and $\alpha_1 v_1 + \alpha_2 v_2 = 0$
 - (c) If B is linearly independent then \exists no nonzero 2-tuple (α_1, α_2) such that $\alpha_1 v_1 + \alpha_2 v_2 \neq 0$
 - (d) If B is linearly independent then \exists no nonzero 2-tuple (α_1, α_2) such that $\alpha_1 v_1 + \alpha_2 v_2 = 0$

48. Let
$$\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$$
, $|\overline{r}| = \sqrt{x^2 + y^2 + z^2}$ and $\overline{f} : \mathbb{R}^3 - \{0\} \to \mathbb{R}^3$ be given by $f(x, y, z) = \frac{\overline{r}}{|\overline{r}|^n}$. The

value of *n* for which $div(\overline{f}) = 0$ is

(a) 1

(d) 4

49. Let R be a region in the *xy*-plane. The boundary of R is a smooth simple closed curved C which is parametrized by $C = (x(t), y(t)), t \in [0,1]$. The area of R is NOT equal to

(a)
$$\int_{0}^{1} x(t)y'(t)dt$$
 (b) $-\int_{0}^{1} y(t)x'(t)dt$

(b) 2

- (c) $\frac{1}{2}\int_{0}^{1} (x(t)y'(t) + y(t)x'(t))dt$ (d) $\frac{3}{4}\int_{0}^{1} x(t)y'(t)dt \frac{1}{4}\int_{0}^{1} y(t)x'(t)dt$
- 50. A storage depot contains 10 machines 4 of which are defective. If a company selects 5 of these machines randomly, then what is the probability that at least 4 of the machines are NON DEFECTIVE?
 - (a) $\frac{11}{42}$ (b) $\frac{5}{21}$ (c) $\frac{1}{252}$ (d) None of the above

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(35)

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2013

ANSWER KEY

PART-A

1.	(c)	2.	(c)	3.	(d)	4.	(b)	5.	(d)	
6.	(a)	7.	(b)	8.	(d)	9.	(b)	10.	(a)	
11.	(d)	12.	(b)	13.	()	14.	(c)	15.	(d)	
16.	(b)	17.	(d)	18.	(a)	19.	(d)	20.	(c)	
21.	(a)	22.	(a)	23.	(a)	24.	(b)	25.	(a)	
				PA	RT-B					
26.	(c)	27.	(b, d)	28.	(a, b)	29.	(a, b, c)	30.	(b)	
31.	(b)	32.	(a)			34.	(a)		<u>(</u>)	
36.	() ()	37.			(a, c, d)	39.				
41.	(a, c)	42.	(b, c)	43.	(u, e, u) ()		(a, b, d)	45.		
46.	(a, c, d)	47.	(a, b, d)	48.	(c)	49.	(b, d)	50.	(a)	
LAKEEK ENDEAVUUK										

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2012

Time : 2 Hours

Max. Marks: 100

Instructions:

- (*i*) There are a total of **50** questions in **Part-A** and **Part-B** together.
- (*ii*) There is a negative marking in Part-A. Each correct answer carries 1 mark and each wrong answer carries
 -0.33 mark. Each question in Part-A has only one correct option.
- (*iii*) There is **no negative** marking in **Part-B**. Each correct answer carries **3 marks**. In **Part-B** some questions have **more than** one correct option. All the correct options have to be marked in OMR sheet other wise **zero marks** will be credited.

PART-A

- 1. If α,β and γ are the roots of $x^3 + ax^2 + bx + c = 0$ then the value of $\alpha^2 + \beta^2 + \gamma^2$ is
- (a) $a^2 2b$ (b) $b^2 2c$ (c) $c^2 + 2a$ (d) $b^2 + 2c$
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ and f(x) = |x-1| + |x-2|. Let $S_1 = \{x \mid f \text{ is continuous at } x\}$ and $S_2 = \{x \mid f \text{ is differentiable at } x\}$. Then

(a)
$$S_1 = \mathbb{R}, S_2 = \mathbb{R}$$

(c) $S_1 = \mathbb{R} \setminus \{1, 2\}, S_2 = \mathbb{R}$
(d) $S_1 = \mathbb{R} \setminus \{1, 2\}, S_2 = \mathbb{R} \setminus \{1, 2\}$

- 3. Consider the following statements
 - S_1 : If f is Riemann integrable in [0, 1] then f^2 is Riemann integrable in [0, 1]

 \mathbf{S}_2 : If f^2 is Riemann integrable in [0, 1] then f is Riemann integrable in [0, 1] Then

- (a) S_1 is true but S_2 is false (b) S_1 is false but S_2 is true
- (c) both S_1 and S_2 are false (d) both S_1 and S_2 are true
- 4. The function $f(x) = \sin(x) + \cos(x)$ is
 - (a) increasing in $[0, \pi/2]$
 - (b) decreasing in $[0, \pi/2]$
 - (c) increasing in $[0, \pi/4]$ and decreasing in $[\pi/4, \pi/2]$
 - (d) decreasing in $[0, \pi/4]$ and increasing in $[\pi/4, \pi/2]$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

5.	Let G_1 and G_2 be two finite groups with $ G_1 = 100$ and homomorphism, then	$ G_2 = 25$. If $f: G_1 \longrightarrow G_2$ is a surjective group
	(a) $ Ker(f) = 2$ (b) $ Ker(f) = 4$	(c) $ Ker(f) = 5$ (d) $ Ker(f) = 10$
6.	Let $\{p_n\}$ be a strictly increasing sequence of prime nu	mbers and let $x_n = (-1)^{p_n+1} \left(1 + \frac{1}{p_n}\right)$ then
	(a) $\lim_{n \to \infty} x_n = -1/2$	(b) $\lim_{n \to \infty} x_n = -1$
	(c) $\lim_{n \to \infty} x_n = 1$	(d) $\lim_{n \to \infty} x_n$ does not exist
7.	Let V be a vector space of dimension n and $\{v_1, v_2,, v_n\}$	$\{v_n\}$ be a basis of V. Let $\sigma \in S_n$ and $T: V \to V$
	be a linear transformation defined by $T(v_i) = v_{\sigma(i)}$. The	n
		(b) T is one-one but not onto (d) T is an isomorphism
8.	Let G be a group and $a \in G$ be a unique element of or of the group G. Then	rder <i>n</i> where $n > 1$. Let $Z(G)$ denote the centre
	(a) $O(G) = n$ (b) $O(Z(G)) > 1$	(c) $Z(G) = G$ (d) $G = S_2$
9.	If the series $\sum_{n=0}^{\infty} (\sin x)^n$ converges to the value $(4+2\sqrt{2})^n$	$\overline{3}$) for some value of x is $(0, \pi/2)$, then the value
	of x is (a) $\pi/3$ (b) $\pi/4$	(c) $\pi/5$ (d) $\pi/6$
10.	If <i>m</i> and <i>M</i> are respectively the greatest lower by $M = \frac{1}{2}$	
	$S = \left\{\frac{2x+3}{x+2}, x \ge 0\right\}$ then CAREER ENDEA	
	(a) $m \in S, M \notin S$ (b) $m \notin S, M \notin S$	(c) $m \notin S, M \in S$ (d) $m \in S, M \in S$
11.	The value of $\lim_{x\to 0} (\cos x)^{(1/\sin^2 x)}$ is	
		(c) $\exp(-1/2)$ (d) $\exp(1/2)$
12.	The graphs of the real valued functions $f(x) = 2\log(x)$	and $g(x) = \log(2x)$
		(b) intersect at one point only
10		(d) intersect at more than two points
13.	The points of continuity of the function $f : \mathbb{R} \to \mathbb{R}$ def	ined by
	$f(x) = \begin{cases} x^2 - 1 , & \text{if } x \text{ is irrational} \\ 0, & \text{if } x \text{ is rational} \end{cases} \text{ are}$	
	(a) $x = -1, x = 0, x = 1$ (b) $x = -1, x = 1$	(c) $x = -1, x = 0$ (d) $x = 0, x = 1$

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

Downloaded from https://pkalika.in/que-papers-collection/

 $\boxed{2}$

(38)
`		

3

14.	The smallest positive	integer <i>n</i> such that 5^n -	-1 is divisible by 36 is				
	(a) 2	(b) 3	(c) 5	(d) 6			
15.	Let $f(x) = x^5 + a_1 x^4$	$+a_2x^3+a_3x^2$. Suppose	f(-1) > 0 and $f(1) <$	0 then			
	(a) f has at least 3 reading f has at least 3 reading f has at least 3 reading f has a function of f	eal roots	(b)f has at mo	ost 3 real roots			
	(c) f has at most 1 r		(d) all roots of				
16.	Let $\{u, v\}$ be a linear a linearly independent		f a real vector space V.	Then which of the following is not			
	(a) $\{u, u - v\}$		(b) $\{u + \sqrt{2}v, u\}$	$u-\sqrt{2}v\}$			
	(c) $\{v, 2v - u/2\}$		(d) $\{2u + v, -4\}$	u-2v			
17.	Let V be a vector sp	ace of 2×2 real matrice	ces. Let $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$ the equation of the equatio	hen the dimension of the subspace			
	spanned by $\{A, A^2, A^2\}$	$\{A^3, A^4\}$ is					
	(a) 2	(b) 3	(c) 4	(d) 5			
18.	Let $A \in M_3(\mathbb{Q})$. Con	sider the statements					
	P: Matrix A is nilpotent						
	$Q : A^3 = 0$						
	Pick up true statemen	ts from the following					
	(a) $P \Rightarrow Q$		(b) $Q \Rightarrow P$ and	nd $P \Rightarrow Q$			
	(c) $P \Rightarrow Q$ and $Q =$	$\Rightarrow P$	(d) None of (a	a), (b), (c) is true			
19.	Consider the statemer						
	$S_1: 1-1+1-1+1-1+$ $S_2: \frac{1}{1+2} = 1-2+2^2 -$	CAREER E	NDEAVOUR				
	$S_2 \cdot \frac{1}{1+2} - 1 - 2 + 2 = 2$	$-2 + \dots$ then					
	(a) S_1 is true but S_2		(b) S_1 is false	2			
	(c) both S_1 and S_2 a	re true	(d) both S_1 and	d S_2 are false			
20.	Let $x_0 < x_1 < < x_n$ and $y_1, y_2,, y_n \in \mathbb{R}$. Then						
	(a) there exists a unique continuous function f such that $F(x_i) = y_i$ for all <i>i</i> .						
	(b) there exists a unique differentiable function f such that $F(x_i) = y_i$ for all i.						
	(c) there exists a uni	que <i>n</i> times differentiable	le function f such that P	$F(x_i) = y_i$ for all <i>i</i> .			
	(d) there exists a uni	que polynomial function	n f of degree n such that	t $F(x_i) = y_i$ for all i			

21. Solution of the differential equation $y'' - x(y')^2 = 0$, subject to the boundary conditions y(0) = 0, y'(0) = -1 is

(a)
$$y = \sqrt{\frac{-2}{a}} \tan^{-1}\left(\frac{x}{\sqrt{2a}}\right) + b$$
, where *a* and *b* are arbitrary constants

(b)
$$y = -\sqrt{2} \tan^{-1}\left(\frac{x}{\sqrt{2}}\right)$$

(c)
$$y = \sqrt{\frac{2}{a}} \tan^{-1} \left(\frac{x}{\sqrt{2a}} \right) + b$$
, where *a* and *b* are arbitrary constants

(d)
$$y = \frac{-1}{\sqrt{2}} \tan^{-1}(\sqrt{2}x)$$

22. Let V be the vector space of all continuous functions on \mathbb{R} over the field \mathbb{R} .

Let
$$S = \{ |x|, |x-1|, |x-2| \}$$

- (a) S is linearly independent and does not span V (b) S is linearly independent and spans V
- (c) S is linearly dependent and does not span V (d) S is linearly dependent and spans V
- 23. 10 red balls (all alike) and 10 blue balls (all alike) are to be arranged in a row. If every arrangement is equally likely, then the probability that the balls at two ends of the arrangement are of the same colour is
 - (a) equal to $\frac{1}{4}$ (b) equal to $\frac{1}{2}$ (c) less than $\frac{1}{2}$ (d) greater than $\frac{1}{2}$
- 24. 3 students are to be selected to form a committee from a class of 100 students. The chances that the tallest student is one among them is

(a)	less than 5%	(b) 6 to 10%
(c)	15%	(d) 50%

25. Let \vec{f} be a smooth vector valued function of a real variable. Consider the two statements

 S_1 : div curl $\vec{f} = 0$

 S_1 : grad div $\vec{f} = 0$. Then

(a) both S_1 and S_2 are true (b) both S_1 and S_2 are false (c) S_1 is true but S_2 is false (d) S_1 is false but S_2 is true

PART-B

• The following questions may have more than one correct answer

• Find the correct answers and mark them on the OMR sheet. Correct answers (marked in OMR sheet) to a question get 3 marks and zero otherwise.

• For the answer to be right **all the correct options** have to be marked on the OMR sheet. **No credit** will be given for partially correct answers.

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

26. A sphere passing through the points (1, 0, 0), (0, 1, 0), (0, 0, 2) that has the least radius is

(a)
$$18(x^2 + y^2 + z^2) - 16(x + y) - 35z = 2$$

(c)
$$9(x^2 + y^2 + z^2) - 7(x + y) - 17z = 2$$
 (d) None of the above

27. Let f be a function from $\mathbb{R} \to \mathbb{R}$. Consider the statement

P: There exists M in \mathbb{R} such that $|f(x)| \le M$ for all x in \mathbb{R} . Which of the following statements are equivalent to *P*.

(b) $9(x^2 + y^2 + z^2) - 5(x + y) - 16z = 4$

- (a) The range of f is a bounded set of \mathbb{R} (b) |f| is a bounded function
- (c) f is taking all values between -M and M (d) | f | is taking all values between 0 and M/2
- 28. Let $\{x_n\}$ be a sequence of positive real numbers. Then which of the following is false?

(a) If
$$\sum_{n=1}^{\infty} x_n$$
 is convergent then $\sum_{n=1}^{\infty} \sqrt{x_n}$ is convergent
(b) If $\sum_{n=1}^{\infty} x_n$ is convergent then $\sum_{n=1}^{\infty} x_n^2$ is convergent

(c) If
$$\sum_{n=1}^{\infty} x_n^2$$
 is convergent then $\lim_{n \to \infty} x_n = 0$

(d) If
$$\sum_{n=1}^{\infty} \sqrt{x_n}$$
 is convergent then $\lim_{n \to \infty} x_n = 0$

29. Given S_1 and S_2 , where

 S_1 : A series $\sum_{n=0}^{\infty} a_n$ converges if for given $\in > 0$ there exists $N_0 \in \mathbb{N}$ such that $|a_{n+1} - a_n| < \in$ for all $n \ge N_0$.

 S_2 : A series $\sum_{n=0}^{\infty} a_n$ converges if $|a_{n+1} - a_n| < \alpha^n$ where α is a fixed real number in (0, 1)

which of the following statements are true?

- (a) S_1 is true but S_2 is false (b) S_1 is false but S_2 is true
- (c) Both S_1 and S_2 are true (d) Both S_1 and S_2 are false
- 30. Let $x, y \in \mathbb{R}$. If |x + y| = |x| + |y| then

(a)
$$x - y \models |x| - |y|$$

(b) $|xy| = xy$
(c) $|x^2 + y| = |x^2| + |y|$
(d) $|x + y| = x + y$

- 31. Let $f : \mathbb{R} \to \mathbb{R}$ be a quadratic polynomial. Then which of the following is impossible?
 - (a) f(x) < f'(0), for all $x \in \mathbb{R}$ (b) f'(x) > f(x), for all $x \ge 0$
 - (c) f'(0) = 0 and f(1) = f(4) (d) f'(0) = 0 and $f(x) \neq 0$ for all $x \in \mathbb{R}$

CAREER ENDEAVOUR

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

6 If α, β and γ are the roots of the polynomial $x^3 + x^2 + x + 1$, then the value of $\frac{1}{\alpha - 1} + \frac{1}{\beta - 1} + \frac{1}{\gamma - 1}$ is 32. (a) 1/2(b) -1/2(c) 3/2(d) -3/233. Let V be the vector space of polynomials of degree less than or equal to 2. Let $S = \{x^2 + x + 1, x^2 + 2x + 2, x^2 + 3\}$. Then (a) S is a linearly independent set (b) S does not span V (d) None of [A], [B], [C] is false (c) neither [A] nor [B] is false Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Which of these four statements mean that f is a constant function? 34. (a) For all $x, y \in \mathbb{R}$, f(x) = f(y)(b) There exists $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$, f(x) = f(y)(c) There exists $x \in \mathbb{R}$ and there exists $y \in \mathbb{R}$ such that f(x) = f(y)(d) For each $x \in \mathbb{R}$ there exists $y \in \mathbb{R}$ such that f(x) = f(y)Let $A = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ be a 2 × 2 real matrix. Then 35. (a) 1 is the only eigenvalue of A (b) A has two linearly independent eigenvectors (c) A satisfies a polynomial equation with real coefficients of degree 2 (d) A is not invertible under multiplication Let M and N be two smooth functions from \mathbb{R}^2 to \mathbb{R} . The form $(M \, dx + N \, dy)$ is exact if and only if 36. (a) there exists a smooth function f such that M dx + N dy = df(b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ for all x and y EER ENDEAVOUR (c) $\operatorname{Curl}(M\hat{i} + N\hat{j}) = \hat{0}$ (d) all the above statements are true The general solution of the differential equation $(D^2 - I)^2 y = 0$ is 37. (a) $(c_1 - c_2 x) \exp(x) + (c_3 - c_4 x) \exp(-x)$ (b) $(c_1 + c_2 x) \exp(ix) + (c_3 + c_4 x) \exp(-ix)$ (c) $(c_1 - c_2 x) \sin(x) + (c_3 - c_4 x) \cos(-x)$ (d) $c_1 \sin h(x) + c_2 x \sin h(-x) + c_3 \cosh(x) + c_4 x \cosh(-x)$ Let P be a polynomial of degree 5 having 5 distinct real roots. Then 38. (a) the roots of P and P' occur alternately (b) the roots of P' and P'' occur alternately (c) all the roots of P, P', P'', P''', P'''' are real

(d) it is possible to have a repeated root of P''

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(42)

7

39.	If each term of a 3×3 matrix A is constructed by selecting a number from the set $\{-1, 0, 1\}$ with the							
	same probability 1/3, then							
	(a) The probability that the trace of A is greater than	10 is more than $1/3$						
	(b) The probability that A is a diagonal matrix is less	than 1/81						
	(c) The probability that A is a non-singular lower triangle matrix is more than $1/81$							
	(d) The probability that A is symmetric is less than 1.	/81						
40.	By revolving the curve $y = sin(x)$ about the x-axis in	the interval $[0,\pi]$, the surface area of the surface						
	generated is							
	(a) $6\pi + 2\pi \log(1 + \sqrt{2})$	(b) $2\sqrt{2}\pi + 2\pi \log(1 + \sqrt{2})$						
	(c) $2\pi \log(1+\sqrt{2})$	(d) $2\pi(1 + \log(1 + \sqrt{2}))$						
41.	Let $A_i = \begin{bmatrix} \cos^2 \theta_i & \cos \theta_i \sin \theta_i \\ \cos \theta_i \sin \theta_i & \sin^2 \theta_i \end{bmatrix}, i = 1, 2.$ Then A	$A_1 A_2 = 0$ if						
	(a) $\theta_1 = \theta_2 + (2k+1)\pi/2, \ k = 0, 1, 2,$	(b) $\theta_1 = \theta_2 + k\pi, \ k = 0, 1, 2,$						
	(c) $\theta_1 = \theta_2 + 2k\pi, \ k = 0, 1, 2,$	(d) $\theta_1 = \theta_2 + k\pi / 2, \ k = 0, 1, 2,$						
42.	Let $f: X \to Y$ and let A and B be subsets of X. The	en						
	(a) $f(A \cup B) \subseteq f[A] \cup f[B]$	(b) $f[A] \bigcup f[B] \subseteq f(A \bigcup B)$						
	(c) $f(A \cap B) \subseteq f[A] \cap f[B]$	(d) $f[A] \cap f[B] \subseteq f(A \cap B)$						
43.	The value of the integral $\int_{0}^{10} (x - [x]) dx$ is							
	(a) 2 (b) 3	(c) 4 (d) 5						
44.	Let $f, g: (0,1) \to \mathbb{R}$. Let $f(x) = x \sin(1/x^2)$ and g							
	(a) both f and g are uniformly continuous							
	(b) f is uniformly continuous but g is not uniformly co	ntinuous						
	(c) f is not uniformly continuous but g is uniformly co	ntinuous						
	(d) both f and g are not uniformly continuous							
45.	Consider a linear transformation from \mathbb{R}^4 to \mathbb{R}^4 given	by a matrix $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$. Then the number						

of linearly independent vectors whose direction is invariant under this transformation is(a) 0(b) 1(c) 2(d) 4

8

46. Let V be the vector space of polynomials of degree less than or equal to 2. Let $D: V \to V$ be defined as Df = f'. If $B_1 = \{1, x, x^2\}$, $B_2 = \{1, 1 + x^2, 1 + x + x^2\}$ be two ordered bases, then the matrix of linear transformation $[D]_{B_1, B_2}$ is

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

47. If α and β are the roots of $(7+4\sqrt{3})x^2 + (2+\sqrt{3})x - 2 = 0$ then the value of $|\alpha - \beta|$ is

(a)
$$2-\sqrt{3}$$
 (b) $2+\sqrt{3}$ (c) $6+3\sqrt{3}$ (d) $6-3\sqrt{3}$

48. Consider the following system of linear equations

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{15}x_{5} = b_{1},$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{25}x_{5} = b_{b},$$

$$\vdots$$

$$a_{81}x_{1} + a_{82}x_{2} + \dots + a_{85}x_{5} = b_{8}$$

A vector $(\lambda_1, \lambda_2, ..., \lambda_5) \in \mathbb{R}^5$ is said to be a solution of the system if $x_i = \lambda_i, i = 1, 2..., 5$ satisfies all the equations. Then

- (a) If the system of equations has only finitely many solutions then it has exactly one solution
- (b) If all the b_i 's are zero then the set of solutions of the system is a subspace of \mathbb{R}^5 .
- (c) A system of 8 equations in 5 unknowns is always consistent
- (d) If the system of equations has a unique solution then the rank of the matrix $[a_{ij}]$ must be 5.
- 49. What is the negation of the statement "There is a town in which all horses are white"
 - (a) In every town some horse in non-white
 - (b) There is a town in which no horse is white
 - (c) There is a town in which some horse is non-white
 - (d) There is no town without a non-white horse

50. Let S be the surface of the cylinder $x^2 + y^2 = 4$ bounded by the planes z = 0 and z = 1. Then the surface

integral
$$\iint_{S} ((x^{2} - x)\hat{i} - 2xy\hat{j} + z\hat{k}) \cdot \hat{n}dS$$

(a) -1 (b) 0 (c) 1 (d) None of (a), (b), (c)

HYDERABAD CENTRAL UNIVERSITY (HCU)

(44)

M.Sc. Mathematics Entrance - 2012

ANSWER KEY

PART-A

1.	(a)	2.	(b)	3.	(a)	4.	(c)	5.	(b)
6.	(c)	7.	(d)	8.	(b)		(a)	10.	
11.	(c)	12.	(b)	13.	(b)		(d)		(a, d)
16.	(d)	17.	(a)	18.	(d)	19.	(d)	20.	
21.	(b)	22.	()	23.	(c)	24.	(a)	25.	(c)
				PA	RT-B				
26.	()	27.	(a, b)	28.	(a)	29.	(b)	30.	(b, c)
31.	(c)	32.	(d)	33.	(a)	34.	(a, b)	35.	(a, c)
36.	(d)	37.	(a)	38.	(a, b, c)	39.		40.	()
41.	(a)	42.	(a, b, c)	43.	(d)	44.	(a)	45.	(c)
46.	(c)	47.	()	48.	(a, b, d)	49.	(a, d)	50.	(b)
			CANCEN						

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

Downloaded from https://pkalika.in/que-papers-collection/

9

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2010

Time : 2 Hours

Max. Marks: 75

Instructions:

- (*i*) There are a total of **50** questions in **Part-A** and **Part-B** together.
- (*ii*) **Part-A :** Each question carry **1 Mark**. **0.33 marks** will be deducted for each wrong answer. There will be no penalty if the questions if left unanswered.
- (*iii*) **Part-B**: Each question carries **2** Marks. **0.66 marks** will be deducted for a wrong answer. There will be no penalty if the questions if left unanswered.

PART-A

The set of real numbers is denoted by \mathbb{R} , the set of complex numbers by \mathbb{C} , the set of rational numbers by \mathbb{Q} , the set of integers by \mathbb{Z} , and the set of natural numbers by \mathbb{N} .

- 1. Let $f(x) = \cos |x|$ and $g(x) = \sin |x|$ then
 - (a) both f and g are even functions
 - (b) both f and g are odd functions
 - (c) f is an even function and g is an odd function
 - (d) f is an odd function and g is an even function

2. The sequence
$$\left\{ (-1)^n \left(1 + \frac{1}{n} \right) \right\}$$
 is

- (a) bounded below but not bounded above
- (b) bounded above but not bounded below(d) not bounded

- (c) bounded
- 3. If $f(x) = \begin{cases} \exp(x) 1 x, & x \neq 0 \\ 0, & x = 0, \end{cases}$ then f'(0) is

(b) 1 (c) 1/2 (d) none of these

- 4. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a matrix with integer entries such that $b \neq 0$. If $A^2 + A + I_2 = 0$ then
 - (a) $a^2 a bc = 1$ (b) $a^2 - a - bd = 1$ (c) $a^2 + a + bc = -1$ (d) $a^2 + a - bc = -1$

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(46)

		2						
5.	The number of points at which the function							
	$f(x) = (x -3)\sin(\pi x) + (x^2-1)(x^3-27) $	takes zero value is						
	(a) 1 (b) 2	(c) 3 (d) 4						
6.	Let $f(x) = \begin{cases} 2x, & \text{if } x \text{ is irrational,} \\ x+3, & \text{if } x \text{ is rational,} \end{cases}$ be a function of the formula of the for	unction defined from $\mathbb R$ to $\mathbb R$. Then the discontinuities of f						
	are (a) all rational numbers	(b) all irrational numbers						
	(c) $\mathbb{R} \setminus \{2\}$	(d) $\mathbb{R} \setminus \{3\}$						
7.								
7.	matrix. Which of the following statements are	$BX = 0$ where A and B are $n \times n$ matrices and X is a $n \times 1$ true.						
	(i) $det(A) = det(B)$ implies that the two systems							
	(ii) The two systems have the same solutions implies $det(A) = det(B)$ (iii) $det(A) = 0 \neq det(B)$ implies that the two systems can have different solutions							
	(a) All are true	(b) (i) is true						
	(c) (iii) is true	(d) (i) and (ii) are true						
8.	$\int \frac{(x+1)\exp(x)}{\cos^2(x\exp(x))} dx$ is equal to							
	(a) $-\cot(x\exp(x)) + C$	(b) $\tan(x \exp(x)) + C$						
	(c) $\log(\sec(x \exp(x)) + C)$	(d) $\cos(x \exp(x)) + C$						
9.	If $f(x) = x^3 - 2x^2$ in (0, 5) then the value of	c to satisfy the Mean Value theorem is						
	(a) 2 (b) 3	(c) 4 (d) None of these						
10.		nd 1 with probabilities $1/3$ each. Then the mean value of X						
	is							
11	(a) 0 (b) 1 True surplus on drawn without real connect	(c) 0.5 (d) 0.52						
11.	number strictly lies in	from 1, 2,, 10. The probability that their sum is an even						
	-	(c) $(1/2, 3/4]$ (d) $(3/4, 1]$						
12.	$\lim_{x \to -1} \frac{\sqrt{2x+3}-1}{\sqrt{5+x}-2}$ is equal to							
	(a) 4 (b) 3	(c) 2 (d) None of these						
13.	For $X, Y \subset \mathbb{R}$, define $X + Y = \{x + y \mid x \in Y, x \in Y\}$	$y \in Y$. An example where $X + Y \neq \mathbb{R}$ is						
	(a) $X = \mathbb{Q}, Y = \mathbb{R} \setminus \mathbb{Q}$	(b) $X = \mathbb{Z}, Y = [1/2, 1/2]$						
	(c) $X = (-\infty, 100], Y = \{p \in \mathbb{N} \mid p \text{ is prime}\}$	(d) $X = (-\infty, 100], Y = \mathbb{Z}$						

CAREER ENDEAVOUR

(47)

3

14. Let $f:[0,5] \to \mathbb{R}$ be continuous function with a maximum at x=2 then (a) the derivative of f at 2 may not exist (b) the derivative of f at 2 must not exist and be nonzero (c) the derivative of f at 2 must not exist and be zero (d) the derivative of f at 2 can not exist 15. The perimeter of the Cardiod $r = a(1 + \cos \theta)$ is (d) none of these (a) 2*a* (b) 4*a* (c) 8*a* If $P(x) = x^3 + 7x^2 + 6x + 5$ then 16. (a) *P* has no real root (b) *P* has three real roots (c) *P* has exactly one negative real root (d) P has exactly two complex roots The number of diagonal 3×3 complex matrices A such that $A^3 = I$ is 17. (c) 9 (a) 1 (b) 3 (d) 27 The number of subgroups of order 4 in a cyclic group of order 12 is 18. (a) 0 (c) 2 (b) 1 (d) 3 Let G be an abelian group and let $f(x) = x^2$ be an automorphism of G if G is 19. (a) finite (b) finite cyclic (d) prime order ≥ 7 (c) prime order The series $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$ 20. (a) converges to 1 (b) converges to 1/2(c) converges to 3/4(d) does not converge The sequence $\left\{1 + \sum_{j=1}^{n} \frac{(-1)j}{2j+1}\right\}$ is **EER ENDEAVOUR** 21. (b) bounded and divergent (a) unbounded and divergent (d) bounded and convergent (c) unbounded and convergent The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} \frac{1-x}{|1-x|}, & |x| < 1, \\ x^2, & |x| \ge 1 \end{cases}$ is 22. (a) continuous at all points (b) not continuous at $x = \pm 1$ (c) differentiable at all points (d) none of these Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T((x_1, x_2, x_3)) = (x_1 + x_2, x_2 + x_3, x_3 + x_1)$. Then an 23. eigenvalue for T is (a) 0 (b) 1 (c) 2 (d) 3

(48)

The solutions of $x^2y'' + xy' + 4y = 0$, $x \neq 0$ are 24.

(a) $\cos(\log x)$, and $\sin(\log x)$

(c) $\cos(\log x^2)$, and $\sin(\log x)$

(b) $\cos(\log x)$, and $\sin(\log x^2)$ (

25. The series
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n}$$

(a) converges in (-1, 1)

(c) converges in [-1, 1)

(d)
$$\cos(2\log x)$$
, and $\sin(2\log x)$

PART-B

26. The integrating factor of the differential equation $(y^2 - x^2y)dx + x^3dy = 0$ is

(a)
$$(xy)^{-1}$$
 (b) $(xy)^{-2}$ (c) xy (d) $x^{3}y^{3}$
27. An example of an infinite group in which every element has finite order is
(a) non-singular 2 × 2 matrices with integer entries
(b) $(\mathbb{Q}/\mathbb{Z}, +)$
(c) the invertible elements in \mathbb{Z} under multiplication
(d) the Quarternion group
28. The value of the determinant $\begin{vmatrix} 1^{2} & 2^{2} & 3^{2} & 4^{2} \\ 2^{2} & 3^{2} & 4^{2} & 5^{2} \\ 3^{2} & 4^{2} & 5^{2} & 6^{2} \\ 4^{2} & 5^{2} & 6^{2} & 7^{2} \end{vmatrix}$ is
(a) 0 (b) 1 (c) 2 (d) none of the girls G_{1}, G_{2}, G_{3} and 3 boys B_{1}, B_{2}, B_{3} are made to sit in a row randomly. The pro-

of these

- 29 obability that at lest two girls are next to each other is (a) 0 (b) 1/10 (c) 1/20 (d) 9/10 3 red balls (all alike), 4 blue balls (all alike) and 3 green balls (all alike) are arranged in a row. Then the 30. probability that all 3 red balls are together is (a) 1/15 (b) 1/10! (c) 8!/10! (d) 3/10! 31. The equation $|x-1| + |x| + |x+1| = x+2, x \in \mathbb{R}$ has (a) no solution (b) only one solution
 - (c) only two solutions (d) infinitely many solutions

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(49)

- A natural number 'n' is said to be "petty" if all its prime divisors are $<\sqrt{n}$. A natural number is square 32. free if the square of a prime can not divide it. Then
 - (a) Every square free number is petty
 - (b) All even numbers are petty
 - (c) There exists an infinite numbers which are petty
 - (d) Square of a prime number is petty

For the sequence $\left\{\sqrt{n} + \frac{(-1)^n}{\sqrt{n}}\right\}$ of real numbers 33.

- (a) the greatest lower bound and least upper bound exist
- (b) the greatest lower bound exists but not least upper bound
- (c) the least upper bound exists but not the greatest lower bound
- (d) neither the greatest lower bound nor the least upper bound exist
- 34. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and consider the following

(i) $|f(x) - f(y)| \le 1, \forall x, y \in \mathbb{R}$ with $|x - y| \le 1$

(ii) $|f'(x)| \le 1, \forall x \in \mathbb{R}$

Then we have

- (a) (i) implies (ii) but (ii) does not imply (i)
- (b) (ii) implies (i) but (i) does not imply (ii)
- (c) (i) implies (ii) and (ii) implies (i)
- (d) (i) does not imply (ii) and (ii) does not imply (i)
- 35. Let $U = \{(a,b,c,d) / a + b = c + d\}, V = \{(a,b,c,d) / a = b,c = d\}$ be subspaces of \mathbb{R}^4 . Then the dimensions U and V are
 - **AREER ENDE** (b) 2 and 3 respectively (d) 3 and 4 respectively (a) 1 and 2 respectively
 - (c) 3 and 2 respectively
- Let $f:[0,1] \to \mathbb{R}$ be continuous function and define $g:[0,1] \to \mathbb{R}$ as $g(x) = (f(x))^2$. Then 36.

(a)
$$\int_{0}^{1} f dx = 0 \Rightarrow \int_{0}^{1} g dx = 0$$

(b) $\int_{0}^{1} g dx = 0 \Rightarrow \int_{0}^{1} f dx = 0$
(c) $\int_{0}^{1} g dx = \left(\int_{0}^{1} f dx\right)^{2}$
(d) $\int_{0}^{1} f dx \le \int_{0}^{1} g dx$

Let X be a set, $\{A_{\alpha} \mid \alpha \in I\}$ be a collection of subsets of X and $f: X \to X$ be a function. Then we have 37.

0

$$f\left(\bigcap_{\alpha \in I} A_{\alpha}\right) = \bigcap_{\alpha \in I} f(A_{\alpha}) \text{ if}$$
(a) X is finite
(b) I is finite
(c) f is one-one
(d) f is onto

1

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

(50)

The value of the integral $\int \log(\sqrt{1+x} + \sqrt{1-x}) dx$ is 38. (a) $\log \sqrt{2} - 1$ (b) $1 - \log \sqrt{2}$ (d) $\log \sqrt{2} - 1/2 + \pi/4$ (c) $\log \sqrt{2} + 1/2 + \pi/4$ The derivative of the function $y = \sin^{-1}\left(\sqrt{\frac{x-1}{x+1}}\right) + \sec^{-1}\left(\sqrt{\frac{x+1}{x-1}}\right)$ is 39. (a) -1 (b) 0 (c) 1 (d) none of these 40. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by $T((x_1, x_2, x_3, x_4)) = c(x_1 - x_2, x_2 - x_3, x_3 - x_4)$. Then, which of the following statements are true? (i) dim Ker(T) = 1 if $c \neq 0$ (ii) dim Ker(T) = 4 if c = 0(iii) dim Ker(T) = 1 if T is onto (a) (i) and (ii) (b) (ii) alone (c) (ii) and (iii) (d) (i), (ii) and (iii)Let S₁ and S₂ be two series defined for $x \in (-1, 1)$ as $S_1 = \sum_{n=0}^{\infty} (\sin n)x^n$ and $S_2 = \sum_{n=0}^{\infty} (\sin n + \cos n)x^n$ 41. then (a) S_1 and S_2 are convergent (b) S_1 and S_2 are bounded but are not convergent (c) S_1 is convergent, S_1 but S_2 is only bounded (d) S_1 and S_2 are divergent If $P = \begin{bmatrix} 3 & -3 & 3 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ then P is invertible and P⁻¹ is equal to 42. (a) $(P^2 + P + I)/3$ (b) $(P^2 + P - I)/3$ (c) $(P^2 - P + I)/3$ (d) $(P^2 - P - I)/3$ Let $\{x_n\}, \{y_n\}$ be two convergent real sequences and let $z_n = \max\{x_n, y_n\}$ for each $n \in \mathbb{N}$. Then 43. (a) $\{z_n\}$ is convergent (b) $\{z_n\}$ is bounded but may not be convergent

- (c) $\{z_n\}$ may not be convergent but $\{z_n\}$ has a convergent sub-sequence
- (d) $\{z_n\}$ is convergent if and only if $\exists n_0 \in \mathbb{N} \ni x_n = y_n \forall_n \ge n_0$

1	51)
J	51)

1.1	The solution of the differential equation $y' - y = xy^5$ is				
44.	The solution of the differen	that equation $y - y = xy$			
	(a) $y = (-x + c \exp(-4x) + c \exp(-4x))$	$(-1/4)^4$	(b) $y = (-x + c ex)^{-1}$	$p(-4x)+1/4)^{-4}$	
	(c) $y = (-x + c \exp(-4x) + c \exp(-4x))$	$(1/4)^{-1/4}$	(d) $y = (-x + c ex)^{-1}$	$p(-4x)+1/4)^{1/4}$	
45.	Let $f : \mathbb{R} \to \mathbb{R}$ be a contin	uous function such that	$f(n) = n, \ \forall n \in \mathbb{Z}.$	Then	
	(a) f is identity		(b) $ f(x) \le x, \forall x$	$z \in \mathbb{R}$	
	(c) $f(x) > 0, \forall x \in (0,\infty)$		(d) none of these		
46.	Let $\{u, v, w\}$ be a linearly	independent set in the	vector space \mathbb{R}^3 a	and let $X = \operatorname{span}\{u, v+w\}$ and	
	$Y = \operatorname{span}\{w, u + v\}$. Then t	he dimension of $X \cap Y$	is		
	(a) 0		(b) 1		
	(c) 2		(d) can not be fou	and from the information	
47.	Let $f(x) = x x $ and $g(x)$	$= \sin x $ then			
	(a) both f and g are different for g are different for g and g are different for g are differ	entiable functions			
	(b) f is differentiable function	ion but g is not			
	(c) g is differentiable funct	ion but f is not			
	(d) both f and g are not different difference of f and g are not difference of g are not differen	fferentiable functions			
48.	Let $u = x + ct$, $v = x - ct$	and $z = \log u + \sin v^2$ the	en $\frac{\partial^2 z}{\partial t^2} - c^2 \frac{\partial^2 z}{\partial x^2}$ is e	qual to	
	(a) <i>-c</i>	(b) -1	(c) –2 <i>c</i>	(d) 0	
49.	If α , β and γ are the root	s of the equation $15x^3 +$	7x - 11 = 0 then the	value of $\alpha^3 + \beta^3 + \gamma^3$ is	
	(a) 3/5	(b) 7/5	(c) 9/5	(d) 11/5	
50.	Area of the region enclose	d by the curves $y = x^2 - x^2$	x-2 and $y=0$ is		
	(a) 7/2	(b) 57/2 CND	(c) 9/2	(d) -9/2	

(52)

HYDERABAD CENTRAL UNIVERSITY (HCU) M.Sc. Mathematics Entrance - 2010

ANSWER KEY

PART-A

1.	(a)	2.	(c)	3.	(a)	4.	(c)	5.	(c)
6.	(d)		(c)	8.	(b)		(b)	10.	
11.	(b)	12.		13.	(a)		(a)	15.	
16.	(c, d)		(d)	18.	(b)	19.	(d)	20.	
21.	(d)	22.	(a)	23.	(c)	24.	(d)	25.	
				PA	RT-B				
26.	(b)	27.	(b)	28.	(a)	29.	(d)	30.	(a)
31.	(d)	32.	(c)	33.	(b)	34.	(b)	35.	(c)
36.	(b)	37.	(c)	38.	(d)	39.	(b)	40.	(d)
41.	(a)	42.	(c)	43.	(a)	44.	(c)	45.	(d)
46.	(b)	47.	(b)	48.	(d)	49.	(d)	50.	(c)
				CN					
			LARCCR	CI	IDCAA	JUI	V		

South Delhi : 28-A/11, Jia Sarai, Near-IIT Hauz Khas, New Delhi-16, Ph : 011-26851008, 26861009 North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: 011-65462244, 65662255

Downloaded from https://pkalika.in/que-papers-collection/

8