Abstract Algebra

[1]

[Handwritten Study Material with solved examples]

[For NET, GATE, SET, JAM, NBHM, PSC, MSc, ...etc.]

Þ

P. Kalika (NET(JRF), GATE, SET) Email: <u>maths.whisperer@gmail.com</u>

No. of Pages: 50

Download NET/GATE/SET Study Materials at <u>https://pkalika.wordpress.com/</u> FB Page: <u>https://www.facebook.com/groups/pkalika/</u>

(Your Feedbacks/Comments at maths.whisperer@gmail.com)

Content:

- Sylows' Theorem
 - Results and examples
- Application of Sylow Theorem
- Index Theorem
 - \circ 2-odd test and examples
- Simple Group and Composition Series
 - o Results and Examples
- Solvable Groups
 - Results and Examples
- External Direct Product(EDP)
 - Results, Properties of EDP & examples
- Internal Direct Product
 - Results and Examples

[3] 4.5 Page No. 182 Date SYLOW'S THEOREM Def? let li be a goorp & lit p be a prime. A group of order per for some d=1 is called (1) as p-gooup. A subgroup of his called p-Subgop. If h is a group of order prim where pit (2) then a subgroup of order pars called a Sylow p- subgroup of h. Sylp(n) = Set of Sylow p-subgrps of n ng(n) = no. of sylow p-subgrps of G. (3) Theorem SYLOW'S THEOREMS:-(18) (i) Sylow Theosen 1: let h be a group of order prime where p is a prime not dividing m je ptm. Then Ja sylow p-subgep of h of order pr J.C Sylp(h) = \$ (Si) Sylow theorem 2 . If p is a sylow p-subgop of a & Q is any p-subget of h, then For geh sit Q = gpg - i-e Q is contained in some conjugate of P. In particular, Any two sylow p- subgrps are Conjugate in G. (iii) Sylow theorem 3: The no. of distinct sylow p-subgops divides 111 \$ is of the form Kp+1 i e m = kp + 1ang= 2 mod p je n= 14: Nulp)

[Sylow, Solvable, Simple, EDP, IDP]

Page No. 184 Date evolog: A sylow p-subgp is normal iff it (20) is conique. Pf: 1) let G be a gop of order prim sit pixm let P be a sylow p-subgrp of G then |p| = pr hiven: -Sylow p-subgrp is unique. Now for gea , grg - = a as there is only one sylow p-subgrp of h. =) grg-1 = l + gt. 3 RAN- : & MARIANT 2 WOJY2 let Patr. manuellende Plipe unique. let Q be any other sylow p-subgroup of a then by sylow theorem 2 = J gels sit Q = gpg⁻¹ $4 \quad q = gpg^{-1} = p \quad \forall g \in h.$ es Ron. $\Rightarrow Q = P$ =) Sylow p-subgrp is unique. R IS normal in h (=) All subgrops generated (2) by elter of 2-Power order are p-groups i-e if x is only subset of h s.t. Ix1 = Powers of P FREX then < x> is a p-group. Pf let x be any subset of h & t /x1 = Rower of p + x6x,

[4]

[5] [Sylow, Solvable, Simple, EDP, IDP] 135 Page No. Then by Sylow then 2 for Date Even xex. Zgen oit xegpg- = g :: PAN =) x c f =) (2) = & (2) To a l-group. let <x> is a p-group. let X be the union of all sylow p-subgroups of h. R is a sylow p-subgrps of 12. = p < < x> Since, P is a p- subgep of h of maximal order $= \langle x \rangle = f$ =) l is the unique sylow_subgrip . P.D.h. APPLICATION OF 'SYLOW 'THRM Theorem: If I hI = pq with p & q formes with pcq R px (q-1) then Cr is cycloc. AB PC9 & Pfg-1 Pf: = 9 + +-1 Now, 141= pq => p/141 but p2 / 141 -. In hap sylow p-subgps of order p. form 1+KP (K≥0) $i e n_b = 1 + KP$ =) 1+ kp / In/ =) 1+ kp / pq AD (1+KP, p) = 2 = 1+KP =) 1+kp=1 cr q Now, 1+kp=1 => k=0 ~ 1 kp= 2 =) Kp= 9-1 => P 9-1 not possible (agiven)

Page No. 186 1+kp=1 -> k=0 Date I only one sylow p-subget of say ph |P| = P11'my 7 only one sylow 9-subgets 191=9 AB P 15 the worigne sylow ps - subgop of Psh. 11'my Q is the waigne sylow gisubger 04 be'll now, show that Eng= se3 , PNR =) P & Eng = + Now = |pna| |p1 = & |pna| | R IPNAIP & IPNAI 2 as (P14/21 2/PNQ) 21 2) & POQ = {e} Now. |P|= P =) P IS cyclic Every gop of Porme 1 & 1=9] Q The cyclic. order is you'c let P=(x) for rey th Q= (Y), per=p, 121=9 we'll Prove flot 2 & y commente. Consider, xyzy = (xyx+)y+ GQ : QAL xyx177 = x (xx1) FP · yPD4. append saysty CPUS = feg こ ハリメブリー こと こ ハリーブル Y xy = (x1 | Y) = pg=1W -124=126 (x(12)x(1)y) I h= (24) =) h is a cyclic gop generated & 1 xy

[7] [Sylow, Solvable, Simple, EDP, IDP] Page No. 18 Date as h is a cyclic gop of order pq and Jhx Epg. from that every gop of order 15 1/2 cyclic. Que |h| = 1r = 3.5p=3, p < 9374 9=5, 4 P.+2-1 by above thre, be is cyclic. Prove that of 161=p29 where p & 9 are distinct grimes with p>9 then a has a normal subgroup of order pr. 161= 29 =) p2/16/ · Sylow p-subgets are of order pr. n = No. of distinct sylow p-subgops. that divides 1/21 $=) m_p = k p + 1 | 1 m | k \ge 0$ ei Kp+1 $(kp+1, p^2) = 1$ (KP+1) / 9 Now, if kel then KRZP .: KP+1>>>9 =) KP+1 can't divide qif K # 0. $k=0, k=0, n_p=1, n_{p=1}$ of Thus I a unique sylow p-subget of order pr sit psh. Cose-II If Inl= p29 where p & 9 are distinct Prime with pcq. P.T then G has a normal sut of order 2 cr 1/1 = 12.

182 Page No. Date ap / h/ = 1029 80 ª -i 6 can have a sylow p-subget of order q. ng=kg+1 is the no. of distinct 9-subgroups of h. (kq+1) 1121 => (kq+1) p2q A\$ [kg +1; g)=1 = z(kg +1) p2 =) Kq+1=1 & p ~ p Kg H=1 ... K=0 =) Ja Unique sylow (1)q-subgep of ader 2 say Q. 121= 2. = RAL - Qis unique (ii) Kg+1= p<q not possible (p<e) Ciil $kq + 1 = p^2$ $kq = p^2 - 1 = (p-1)(p+1)$:, 9 (p-1) (p+1) .: 9 p-1 cr 9 p+1 178. 9>p => 9 × p-1 2/ p+1 2>p => 22 p+L { 2= p+1 consecutive A8, pring · : b= 2+ q=3 =) 1h1 = p2g = 12. Show that a group of order 30 has normal subgroup of order 15: (i.e isomerphic to Zis 50 --161= 30= 2.3.5 =) 3 [16] . G hap sylow 3 subgops of order =) m= No. of distinct sylow 3-subgrops divides 141. 3K+1 161 , K>0 =1

[9] [Sylow, Solvable, Simple, EDP, IDP] Page No. 129 Date =) 3k+1 2.3.5 (3×+1,3)=1=) (3×+1) 10 : 3k+1 =1 or 2 or 5 or 10. 3k+1=1 = k=0 8k+1=2 = k=1 not possible. 3k+1=5=) k=4 " 3k+1=10 = K=3 =) There is either one or 10 distinct sylow 3 - subgpts. i.e. $M_3 = 1$ or 10 Il'ry ng=1 or 6 Index Theorem (5K+1) 6 = 5K+1 or 2 or 3 or 6 = 5K+1=1 = K=0 7 5kH = 6 = j = k = 1Jf possible suppose n3=40 & n5=6. =) = 10 distinct sylow 3-subgroups. P. P. - P. -= 5-subgrop 0, 0, 02, -- 86. · i |Pi = 3 =) Every non-identity elt. of Pi is of order 3. There are 2 non-identity elts in each Pi, i=1,2,---;10. ŝ =) No: of distinct eltips of order 3 = 10/2=21 -5=6xy=24. 11ry -Jota = 20+24 = 44 elts = |h| > 30 Not Possible. =) n3 = 10 & n5 = 6 er =) n3=1 ~ n5=1 1. =) I a unique sylow 3-subger 80% P. a unique sylow 5- subgers say R.

	[10] [Sylow, Solvable, Simple, EDP, IDP]
-	Page No. 190
An 	JRAG RQAG. Date
	AB PAN & RCh => PR <h< th=""></h<>
	1011-01
	Also, $ Pa = P a = 3.5 = 15$
	Ipnal 1
	PNQ = feb
	$ h:RR = \frac{30}{15} = 2$
	i RRAG (Every subgop. of index 2. is normal in G.]
	1Pa 1=15-cyclic
	~ Z15
×	Index Theorem :
	If h is a finite group & H is a proper
	subgroup of h sit [11] doesn't divide [h:H]!
	then H contains a non-toivial normal subget
	of h. In Particular, Cr is not Simple.
	Repart and R. Condito Condition of the
Result	- 2-add Jest: - An integer of the torm 2.n where n is an odd no. greater than 2. is not the order of a simple group.
	2.n where n is an odd no. greater than 2.
	is not the order of a simple group.
125 6 16 3 4	
Que:	Prove that a gop. of order 56 hap a normal sylves p-subgep for prime p dividing its order. 141 = 56 = 237
en al	sylves p-subget for prime & dividing
0. It	its order.
.80M -	$ h = 56 = 2^{3} 7$
	Jhen a hop splow 2- subgops of oder 2 ³ =8
	(2 hop Sylow 7- Subgapp of order = 7
	ny = No. of aistinct sylow 7- subgop of
	order of they divides 1 h).
	(2 hop Sylow 7-Subgapp of order = 7 M7 = NO. of æistinct sylow 7-subgap of Order 7 that divides 1 h). =) (7KM) [16], K20

1237

(7K+1)

[11] Page No. 191 OP ((7KH),7) = 1 Date 7 (7KH) 23 7 (7KH) 8 = 7KH=102 cr 4 m8 7 1K+1 = 2 Gr 4 7 7 K+1=1 cr. 7 K+1=8 7 7 7=1 cr3 ⇒ K=0 ~ 1 N2 = No. of distinct sylow 2-subgops of order & =) (2k+1) 1u1 =) (2k+1) 23.7 =) (2K+1, 7) = 1 = (2k+1) /7 =) 2k+1 = 1 or T.K=0 or k=3. M2=1. or 7 1 We have from that $n_2 \neq 7$ & $n_2 \neq 8$ if $n_2 = 7$ & $n_4 = 8$, 4 Tr- aut As all the are distinct of |Hi|=8, IKi" 1=7 7. |Ki]=7 = there are 6 non-identity elt-s of ord =) NO. of elt & of order 7 = 8x6 = 48 Consider Hi. $if gthi, 1 \le i \le 7$ then $|y| = 2^{x}, 0 \le x \le 3$, $i' |Hi| = 2^{3}$. Consider HINH2, Since H, the => [H, nH2] = 2B , 05B=2 1H1VH2 = 1H1 + 1H2 - 1H1NH2] 2 23+23-26 Z 18-2β ≥ 12.

Page No. 192 Date G hap at least 12 et & of order in power of 2. of has at least 12+48=60 non-identity elt.s. =) But 141=56660 Contradiction =) n2 = 7 ~ n7 = 8 =) Cy hop either one sylow 2-subgrp of a hop Only 1 sylow 7 subgrp. G is not simple ap h2=1 ar n721 It hap a unique sylow 2-subget P -: PDU. or it hap a unique sylow 7- subget & isay) = QAh. 1621 = 105. From G has a normal sylow P -17 5-subget & a wormal syloco 7-subgets. [in]= 105= 3.5.7 St hap sylow 3- subgrps of order 3. 5 - h5 = No. of distinct sylow 5-subgrps of order 5' n= No. of distinct splow - subgross of order7 $n_{f} = (5k+1) | 141$ 7 $m_{7} = (7KH) | | b_{1}$ (5k+1) 3.5.7 00 (5kH,5)=1 ·=)(5·k+1) 3.7=21 [my (7k+1) 15

[12]

Page No. 192 =) 5K+1= 183 87 7 4 21 Date 5K+1 = 3 + 7 =) 5kH = 1 or 21 11/24y, 7k+1 = 1 or 15 Now not = 1 ar 15, nes= 1 ar 21 9f ng=15, & ng= 1521 =) 7 15 distinct sylow 7- subgroups H1, H2, ---, H15 7 21 distinct sylow 5 - subgrups -) |Hi] = 7 4 |Ki] = 5 Every Hi hap 6 non-identity elts of order 7 Every Ki hap 4 non-identity elts of order 5. 1) 7 6×15=90 elts of order 7. 67 4×21 = 84 ----51 = 90+ 84 = 174 elts of h. not possible. > Either ns=1 or n==1 sf no=1 = 7 a unique sylow 5-subgops of order 5 say P. 7 a unique sylow 7-subgrp of order 7 7 say Q. PAN & QZU, PNQ= 103 Then pack $\frac{|PQ| = \underline{PP}|Q| = 5^{\circ} \overline{7} = 35^{\circ}}{|PNQ|} = 1$ [h:PR] = 105 35

[13]

[14] Page No. 196 PRAN Date Now PAN & PRAN = QAN Et-4051 11'ry for ny=1. Tue 6 Exhibit all sylow 3-subgops of Sy & ay Sylow 3-subgops of Ay. 801m $|S_4| = 24 = 2^3 2$ 1012 -23 |Ay1=12 = 22-3 Ay & Sy hap sylow 3- Subgroeps of order 3 9n Ay: -N3 = 3 K+1 = no. of distinct sylow 3-subgesp of order 3. (3KH) / 12 => (3KH) 4.3 =) (3kH) 14 -2) 3kH=1 or 4 $n_3 = 1 \ \alpha \ 4$. There can be 4 sylow 3-subgets of order $A_{4} = \{ I, (123), (132), (124), (142), (134), (143), (143), (142), (134), (143), ($ (234), (2243), (12)(34), (14)(23), (13)(24) 2 $\langle (123) \rangle = \{1, (123), (132)\}$ ((124)) = {I, (124), (142) $\langle (134) \rangle = \{ I, (134), (143) \}$ $\langle (234) \rangle = \{ I_1 (234), (243) \}$ At1 4 sylow 3-subgots of Ay, 9 n Sy : _ n3 = 1 or 4 or 8 but 3KH # 8 -: K= 7/3 not possible Sy hap 4, sylow 3-subgrap of order 3, (some of Ay)

Page No. 195 A PT HOSTING Date has a unique sylow 2 subgop. Au × |A4| = 12 = 22.3 M2 = 2k+1 are distinct sylow 2-subgots (2k+1) 3 = 2k+1=1 or 3 24+7=3 2 KH = 1 () (- 1) =1 K=1 =) K= 0 Ay Let P be the sylow 2- subgroup of orde +4'. $f = \int f_{12}(34) (13) (24) (14) (23)$ J. RDA4. Hence Unique. 0 Ex- 4.5 Exhibit all sylow 2- subgrps of Su. $|S_4| = 24 = 2^3 3$ N2 = 2 K+1 = 200, of distinct sylow 2-group vi ch order of (2KH) 233 2++1) 1541 ヨ =1(2KH) 3 2k+1 = 1 cr 3 3 Ut li, l2, l3 be solow 2-subgroups of order 8. inter Since Sy contains a subgroup of Sy is Do. Do. Do. The * * Cechorob Cechorob For study material Visit https://pkalika.wordpress.com/

[15]

[16] [Sylow, Solvable, Simple, EDP, IDP] Page No. 154 Duis × Chapter-3 (3.4) (Dummit & Foote COMPOSITION SERIES AND THE HOLDER PROGRAMME : emma: 9f h is a finite abelian gop & p is a prime dividing 141, then a contains on elt. o (21) order let p pe a prime dividing 141. Pf: $1 \mathcal{U} \geq 2$ (st 1M = 2 (1) Then h contains an elt. of order 2. $x \in h$, $x \neq e$, s.t. $x^2 = e$. Now, let us assume that result is prie for (11) all gops, with order less than 14, i'e for any gop. whose order is less than Int of pairides its order then I an ect. of order b. Case-I, If h has no proper subgop. Then O(h) is Brome. = p] my = p= 1h1 Jhen his a cyclic gop. JFreh sit x = e (x = e) Cope-E, let a hap a proper subget. H.

[17] Page No. 155 Then H= iei & H+h Date 9t p/1+1 where H<h =)+1/1/1 g 141/161 for H. =) 7 an elt. other than identity in H. ie etach Jakse. of PXIHI, then h is abelian & HSh, JHAN & UIH is defined f fin an abelian group. A180, $\frac{h}{H} = \frac{1}{1H} \left(\frac{1}{1} + \frac{$ Then, by our assumption reaut 1/8 tome for Higaneld, by EHEH $it (bH)^p = H$ $= b^{p}H = H = b^{p}EH$ $= (b^{p})^{[H]} = e^{-\frac{1}{2}}(b^{[H]})^{p} = e^{-\frac{1}{2}}$ =) a = e where b = a E h. We claim that ate if a = e = b1H1 = e = (6H) IHI = 6 IHI H = H =) IBHI 1HI = P |IHI - contradiction =) ate fight = ender and at motor Simple Group :. À finite a Infinite gop is called simple if 141>1 & the only normal subget

[P. Kalika Notes, available at https://pkalika.wordpress.com/] Page 210. 75 6 Daie Note: - Every gop of Prime order is simple. let a be a gop of frime order. Pf; |u| = pLet H ≤ G Jhen IH] p = IHI= I G p = H= {c} w H= G - G is a simple grocep. Composition Senies :-In a group G. a sequence of subgops. SES = NO EN, EN2E --- ENK+ ENK=6 is called a Composition Series if Ni DNi+1 & Ni+1 is a simple gop. for $0 \le i \le k-1$ The quotient gop Nin is called composition factors of G. E_{X-} $D_4 = \{1, \sqrt{3}, \sqrt{2}, \sqrt{3}, \sqrt{3}, \sqrt{3}, \sqrt{8}, \sqrt{8}\sqrt{2}, \sqrt{8}\sqrt{3}, \sqrt{2} = \frac{1}{2} = 5^2, \sqrt{8} = \sqrt{8}^3 \}$ (8) = {1,8] (B, x2) = {1,8, x2,8x2] Here SIZA <>> A <>, 52 > D Dy for D Kry D Kr > K Dy Those are 2' Composition series for Dy. Que: Obtain the Composition series of R.g. Q8= { 1,-2, i,-L, U, -J, K, -K }

	[19] [Sylow, Solvable, Simple, EDP, IDP]
	Page No. 157
	Coorsider
	$N_{\circ} = \{1\}$
martin S	N1 = {1,-1} + 100 stude a stude (1-1+)
	$N_2 = \{1, -1, i, -i\}$
2	$N_3 = R_8$ $N_3 = N_0 \leq N_1 \leq N_2 \leq N_3 = R_8 \qquad 4 N_0 \leq N_1,$
1	$\frac{1}{1} = N_0 \leq N_1 \leq N_2 \leq N_3 = 8_8 \qquad 4 \qquad N_0 \Delta N_1, \qquad N_1 \Delta N_2, \qquad N_2 \Delta N_1, \qquad N_2 A A A A A A A A A A A A A A A A A A A$
1	NI N2 N3 are simple gops
	No N, N2 Gre Dier gorie
E.	(2) $N_0 = \{1\}$ (3) $N_0 = \{1\}$
1	$N_1 = \{1, -1\}$ $N_1 = \{1, -1\}$
1	$N_{2} = \{1, -1, j, -j\}$ $N_{2} = \{1, -1, k, -k\}$
	$N_3 = Q_8 \qquad N_3 = Q_8.$
1	
Rue.	Give an example of an infinite gop which
A	has no composition series.
Pfi-	- Consider (Z,+)
	let if possible & hap a composition series.
A	let for= No = Ni = = Nk = Z be the
1	Composition series for Z. s.t
	Ni A Nite & Nite is prime. Simple.
Je . at	Show that eithy abelian gap is solved
1.	Now, NI = INI
	=) NI Nov, 98 NI is Simple.
-44	I SULLI SOZ & N.
	=) NI has only 2 normal subgers ros & NI itself.
<u> </u>	Now as N, is a subgot of Z & Z is cyclic.
	=) NI 18 also cyclic.
1	let NI = < K> f.s KG Z
1	Then H = <2K> is a normal subget of NI
+	H = NI =) constradiction as N, is simple.
1	
	[P. Kalika Notes, available at https://pkalika.wordpress.com/]

	Page Slo. 158 Date
Thur (2	
#	JORDAN-HOLDER THM: (Jhm-22)
	let Gibe a finite group with bitse3. Then
(i)	C2 has a Composition series &
Liij	The composition factors in a composition series
	are imique, nearly; f-
	$\frac{1}{5e^{2}} = N_{0} \leq N_{1} \leq N_{2} - \leq N_{7} = G$
(Yo	$fe3 = M_0 \leq M_1 \leq M_2 \leq \dots \leq M_8 = G$
N equi	are 2 composition series for 6 then r=8
C 4	& for every 1=i=r-1, 7 j s.t
-	$\frac{M_{j+1}}{M_{i}} \approx \frac{N_{i+1}}{N_{i}}$
1	M; ~ Ni
intrich 1	Kie. hire an example of an intraste get
Det:	Solvable hroups: - milison and
	A gop Gr is solvable if there is a chain
	of subgrps.
	jej= , 6, 4 G, 4 G2 4 Gz = G
	sit him is an abelian group for
	02i [= 0,1,2, 8-1
Result	Show that every abelian gop. is solvable.
- dr	let a be an abelian gap.
801	Consider $G_0 = \{e\}$, $G_1 = G_2$
	$f = 1 \Delta G$
÷	
	$A_{180} G_{1} = 161 = 161 = 167 = 169 = 160 = 169 = 160 = 160 = 160 = 160 = 160 = 160 = 160 = 160 = 160 = 16$
v 	Since G is abelian = Gi is Abelian
	=) G is solvable.
-0 11	
2	Every Cyclic gop. is solvable.
Result	let 6 be a non-abelian simple group. Show
	that G is not - solvable.

Paye No. 159 Date AB G is a simple gop. i the only normal subgops are self tiz. Also, G & G. As G is non-Abelian. Sel G =) G is not solvable. As is not solveble. (: As is a non-Abelian (000 Simple-gop) Show that 5-3 4 Sy are solvable. Que-2 We know that I = A3 = S3 IDA3 & A3DS3. Also, $\begin{vmatrix} 5_3 \\ A_2 \end{vmatrix} = 2 = Prime$ Every group of Prime order is cyclic. Hence abelian. $\left|\frac{1}{1}\right| = 3 = Prime = \frac{A_3}{1}$ is also abelian. =) Sz iz solvable. $|1^{*4}\rangle$ (onsider $K_4 = \{1, (1^2)\{3^4\}, (1^3)\{2^4\}, (1^4)\{2^3\}\}$ IDK4DA4 DS4 Sy = 24 = 2 = Prime. Hence Sy Sy is Ay 12 Ay Ay Ay - 12 = 3 = Prime . Hence Ay is abelian. Ky 4 Ku Ky = 4 = 22 - every gop of order p2 is abelia J Ky is abelion. =) Sy is so votale.

[21]

160 Page No. Date Prove that if G is on abelian simple gop. then Que: 1 Ex-34) G ~ Zp for some pringe p. AS G is obelian =) All its subgrps are normal. Pf: But as G is simple. I There are only 2 normal subgrops of G. ses & G itsolp. But we know that if is infinite then all distinct elt=s will generate a subgrp. G conit be infinite. 6 must be finite. .: By converges converse of lagrange's fim. for finite abelian group. if 141=1's not a prime then it will here subgops which is a contradiction of a has only 2 normal subgrps. = 141= p = G is cyclic gop of order p. = 6 % Zb. Quei-S Prove that subgrps of quotient of a solvable (Et-3) gop are solvable. To frove this Result, we have to prove Pf: let G be a group. f xy xy is a commutator in G. & G'= subgop generated by Sztytow: x, 466} Every elt. of 1' is of the form Pipz--- Pu where each Pix is a commutator Then G' is called a commutator subgop of G. Also G'AG 4G' is the smallest normal subgrb G is obelian if NAU set G is \$.t abelion then- $C_1 \leq N = (*)$

[23] [Sylow, Solvable, Simple, EDP, IDP] 161 Paye No. Date A Group G 18 solvable iff G(") = Se3 for some Theosen 't've integer n where $G^{(n)}$ is the nth commutator subgrp of G. $G^{(3)} = (G^{(2)})^{\prime}$ let G be a solvable then, \exists series say $fe_1^2 = G_0 \subseteq G_1 \subseteq G_2 \subseteq \dots \subseteq G_m = G_2$ where each Cri D Gitt & Crity 18 abelian. \mathcal{L}_{n} \mathcal{L}_{n} is obelian i.e \mathcal{L}_{n-1} is obelian \mathcal{L}_{n-1} Jhen (2'E Gmi) by (*) $\exists (G')' \subseteq G'_{n-1} \exists G'' \subseteq G'_{n-1}$ Again $\frac{G_{n-1}}{G_{n-2}}$ is Abelian $\oint G_{n-2} \land G_{n-1}$ $G_{n-2} \xrightarrow{=} G_{n-1} \xrightarrow{\subseteq} G_{n-2}$ $\xrightarrow{=} G_{1}^{(1)} \xrightarrow{\subseteq} G_{n-2}$ $11'_{1'} \xrightarrow{=} G_{1}^{(3)} \xrightarrow{\subseteq} G_{n-3}$ $G_{1'} \xrightarrow{\subseteq} G_{n-3} \xrightarrow{=} G_{1'} \xrightarrow{=} G_{1'} \xrightarrow{=} G_{1'}$ Suppose, (1") = ses f.s + re integer 'n'. Consider the series $h' \leq h \leq h''$ =) $h'' \leq h''$ $= (b^{(1)})' \leq (b')'$ $=) \quad \mathcal{U}^{(3)} \subseteq \mathcal{U}^{(1)}$ $= \quad \mathcal{U}^{(3)} \subseteq \mathcal{U}^{(n+1)} \subseteq \dots \subseteq \mathcal{U}^{'} \subseteq \mathcal{U}.$ As, WAN - Wild W(i-1) =) $\frac{G(1-1)}{G(1)}$ is obelian. WEREN > his solvable. [P. Kalika Notes, available at https://pkalika.wordpress.com/]

Page No. 162 131 11 192 Daie It Every subgroup of a solvable gop is solvable. let H be a subgroup of a solvable group h P.f: Since by is solvable . -) h(m) = sel frs nEN $A \mathcal{B} \quad H \subseteq \mathcal{G} = \mathcal{H} \stackrel{1}{\subseteq} \mathcal{G} \stackrel{1}{\subseteq} \mathcal{H} \stackrel{1}{\subseteq} \mathcal{G} \stackrel{1}{\subseteq} \mathcal{H} \stackrel{1$ $= H^{(m)} \subseteq h^{(m)} = ses$ $= H^{(m)} = ses = H is solvable.$ Result: Quotient group of a solvable gop. 18 solvable. let a be a solvable grp. & HALL, Then h Pf: is a quotient gp. Define \$:6 → 6|H as \$(g]=gH ¥geh. \$ is an onto H.M =) A& Homomosphic image of a solvable gp is solvable. =) (2 is also solvable. Theorem A simple Group 15 Solvable iff be is Abelian. Pf: It by is Abelian & Simple =) h is solvable (Let a be simple and solvable 2 11 2 4 6 h As high & h is simple. -) x=147xy = 503 h': h': seg or h' = hAs his solvable by lemma 7) 24=42 I le is Abelian w+h $h' = fe_1 = h' is Abelian$ (EX -3.4) Theorem let G be a finite group. Show that G is solvable iff I a series of subgroups. Sel = HOAH, A.- AH, = Bit Him is cyclic. let a be solvable. Since a is finite

Page No. 163 Date ist has a composition series. Sef = HOAH, A---- AHn = G Where HiAHitt & <u>Hitl</u> is simple. Hi Now, Cr is solvable = Hi is solvable + inst Hi+1 is solvable [Quotient gsp. of solvatore gsp is solvable] = Hitz is simple & solvable. = Hitl is Abelian. -: All subgrouts of <u>Hi+1</u> are normal Since, <u>Hitl</u> is simple. Hi It has no non-torial proper subgrps. ie Hitz has only 2 normal subgrops. =) <u>Hitl</u> is prime. As every gob. of Brime order is cyclic. Hin is a cyclic got. Hi Nersen Converse As <u>Hit1</u> 18 cyclic. Hi =) <u>Hitt</u> is abelian. Hi =) his Bolvable. All composition factors of h are of prime order As proved (earlier) (111 Above Hitt 18 of Parme order. Hi As I has a Composition Socies. (IV) =) 1= HOAHIAH2 --- AHn = Cr Sol HiAHiH

[25]

Page No. 164 L Hit 18 cyclic. Date As every cyclic grp is abelion. J <u>Hiti</u> is abelian. Hi Ch gropto) Theorem let HAM. gf both H& m are solvable then C2 is solvable. Pfo-let <u>H</u> = <u>ho</u> > <u>Cri</u> > <u></u> be a solverfale series for M/H. Here each 12° is subgrp. of G containing H. Since hit Ahr =) hin Ahi Also, hm = je} = 6m = H Now, let $\int e_{1}^{2} = H_{n} \subseteq H_{n+1} \subseteq H_{n-2} \subseteq \dots \subseteq H_{1} \subseteq H_{0} \subseteq H_{0} = H_{0}$ be a solveble series for H. Then ses = Hm = Hm E EH, EH, = H = hm Ehmy = (m-2 - - - = Cro = Cr is a solvable series for cr. =) (7. js solveble. ch 6 /21 Pro I P.T Homomosphic image of a solvable gop is theosen Solvable. let a be solvable gop. Pf:let H be a homomorphic image of a. i.e. Fa homomorphism of: 5 -> H that is onto. ¢: 6 → H is a Him of onto AB (7 iß solvable =) 7 a the integer K sit (1/2)={e} T.P His Bolvable, we have to Prove H(K) = Se'] where c' is identity of H .

[27] [Sylow, Solvable, Simple, EDP, IDP] Page No. 165 Date Now, xtytxyEa. Then xtytxy is a commutator. = xy +xy En!. Then. $\phi(x''y'xy) = \phi(x'')\phi(y')\phi(y)$ $= (\phi(x))^{-1} (\phi(y))^{-1} \phi(x) \phi(y)$ is again a commutator. =) \$ (x=4-1x4) EH' =) \$ (u') = H' [: \$ is on to] $H^{(2)} = (H')' = (\phi(h'))' = \phi(h'))$ llinly $H^{(k)} = \phi(n^{(k)}) = \phi(ses) = ses$ =) $H^{(K)} = \{e'\}$ =) H is solvable. * * * 4 577 1 160 162 120 156 All study materials Related to CSIR-NET, GATE, JAM, CUCET, SET/SLET, PSC, ... etc are available at www. pkalika, wordpress, com = P. Kalika

[Sylow, Solvable, Simple, EDP, IDP] [P. Kalika Notes, available at https://pkalika.wordpress.com/] Page No. Date External Direct Product let by, hz, ... in be finite collection of groups. Then GELD -- F Gm = set of the n-tuples of the the form { (dig 2, - In) d; E Gi? GI DG2D -- D Crn is a crocep under Componentwise [addition or much plication] operation $\frac{(2_{1}, 9_{2}, -3_{n})(2_{1}, 9_{2}, --9_{n})}{(2_{1}, 9_{2}, --9_{n})(2_{1}, 9_{2}, --9_{n})(2_{1}, 9_{2}, --9_{n})(2_{1}, 9_{2}, --9_{n})} = (22_{1}, 9_{2}, 9_{2}, --9_{n})(2_{1}, --9_{n})(2$ (î) E Up An (F - A) hn ¥ 9; jg, Eu. $(\hat{i}\bar{i})$ Associativity: Jugo - In) (& B' - g') (B' - g'') = $(8,8), 8_28_2, -3n8_n' | (8'',8_2) - 8n'')$ = ((8,8!)9", (8282)8", --- (8n82)8") (8,18,8"), 8, (2,8"), 8nl8ng")) 18, 82, -- In (gigin -- In) (gi, 8" -- g") Cili 10, ez, - en) E Gi, Alu D. - Alun where eichibe identity of hi Inverse: (8,,92,-8n) E-C2 (Dh.).- () Cin. (IV) Then (gi, gi, -, gi) E Cy D Cn D -- D Un.

[29] [Sylow, Solvable, Simple, EDP, IDP] Page No. 83 Date $O(C_1 \oplus C_2 \oplus - \oplus C_m) = O(C_1) \oplus (C_1) - O(C_m)$ Notes-Consider UL8)(Aulio) Eg-1 $U(18) = \{1, 3, 5, 7\} \odot_8$ $U(10) = \{1, 3, 7, 9\} \odot_{10}$ U(12) (1,10) = S(1,1), (1,3), (1,7), (1,9), (3,1) (3,3),(3,7),(3,9),(5,1),(5,3),(5,7),(0,9)(7,1), (7,3), (7,7), (7,9)? (3,7) (7,9) = (S,3) meets 4 meet 20. U18) (IU10) 18 a group under component -wise operationa (1,1) is identity of U181 (VI10) order of (1,7) 0 (U18) (U10) = 16 Order of each element is a factor of 16 1-e 1,2,4,8,16. $(1,7)^2 = (1,7)(1,7) = (1,49) = (1,9) = 2$ $(1,7)^3 = (1,7)(1,9) = (1,63) = (1,3) = 4$ $(1,7)^{4} = (1,7)(1,3) = (1,21) = (1,1) = 2$ =) Order of (1,7) = 4 inverse of (1,7) is (1,3). find inverse of 15,7) = ? (5,7) (5,3) = (25,21) = (1,1)= innerse of (5,7) = (5,3) $Z_2 \oplus Z_3 = Z_2 = \{0, 1\}, Z_3 = \{0, 1, 2\}$ Ex-2 $Z_2 \oplus Z_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}$

[Sylow, Solvable, Simple, EDP, IDP]

[30] 86 Page No. Date Z2 DZ3 18 an abelian group of order 6! Operation is componentwise addition. Z2 EZ3 is a cyclic group generated by (1,1) 1 (1,1) = (1,1) 2(1,1) = (2,2) = (0,2)3(1,1) = (3,3) = (1,0) 4(1,1) = (4,4) = (0,1) 5(1,1) = (S,S) = (1,2)6(1,1) = (6,6) = (0,0) = (1,1) 1,8 of order & =) (11) is generator of Z2OZ3 As we know that a finite cyclic group of order '6' is jsomosphic to Ze. =) Z2 @ Z3 ~ Z6 Consider Z2 DZ2 Fo Prome Z2 DZ2 2 Z4. Z. () Z 2 = { (0,0), (0,1), (1,0), (1,1) } order of (0,1) = 2 Order of (1,0)=2 11,1)=2 There is no element of order 4 I Z2 D Z2 is not cyclic 2-9-9-9-1 Honce Tap Ta Zzy Properties of External Direct product. Theorem The order of an element of a Direct product of a finite no. of grocep is the reast (8.1)

Page No. 87 Date Common multiple of the orders of the component the element let us consider the special base for n=2. Pf: ie T.S 0(8,82) = lem [0(8,1,0(82)] let &= lain of [0(31), 0(32)] $ut t = 0(8, g_2) \rightarrow 0(8) | s = g_1^* = e_1$ (9192)= (8,92) 0182 = 92= e2 =(9, 02)) 9+ (July) = (G, E), then (g, g,)= (G, C2) = But 018, 8, 1=+ 21 t B • Also, (8,1,9+) = (8,9-)t = (9,e) = 0(8,) | t, 0182) | t -2) t 18 a common factor of 0(8) 90(8) Jalt = S=t Determine the no. of elements of order 5 69-3 In Zis D Zs. If (arb) E Z25 F Z5 has order 5. Hen Soln. 0[(a,b)] = 5 = lam [0[a), 0(b)]Clearly, either O(a) = 5 and O(b) = 1 or 5 C(b) = 5 and O(a) = 1 or 5 [P. Kalika Notes, available at https://pkalika.wordpress.com/]

[31]

	[32] [Sylow, Solvable, Simple, EDP, IDP]
	Page No. 28 Date
Case-1	O(a) = 1, $O(b) = 5'$
	=) there soonly one choice for a sie
~	a=0 and 4 choice for b=1,2,3,4.
	=) There are four et-p of orders.
	= 10, 11, 10, 2), 10, 31, (0, 4).
- A = 10 - D	ALAN AND AND A AND
Case 2	$\partial(a) = 5 R O(b) = 1$
	Shere is only one choice for b=0, Q
+	4 choices for 1a' 5.0, 15, 20,
4	(5,0),(10,0),(15,0),(20,0)
Coye-3.	$0(9) = 5 \ \ 0(b) = 5^{-1}$
- Coje -	four choices for a25, 10, 15, 20 & four
	Choices for $b = 1, 2, 3, 4$.
4	There are 16 elts of order '5'.
	= Z25 D Z5 has 24 elts of order 5.
Ex. 4	Determine the no. of cyclic subgrapp of order 10 in Zivo EZ25.
	of order 10 in Z100 DZ25 *
5011:-	
	Let up first find elts. jm Z100 725
7	of order 10. If (a,b) E Z100 D Z28 has order 10.
	then 0 ((a, b)] = 10 = lem [01 a), 01 b)]
	So, 2. Cases aries
(î)	0(a) = 10, $0(b) = 4$ or 5'. $0(b)$ Com't be to
(17)	O(a) = 2, O(b) = 5 $O(b) Can't be 2$
Case-I	$O(a) = 10 \ q \ O(b) = 1 \ m 5'$
	Since Zion has a unique cyclic subget.
	of order 10 & only cyclic group of order 10 has four generatory.
	10 has four generatory

[33] [Sylow, Solvable, Simple, EDP, IDP] Page No. 89 South . Date t: h= <a> of order n. then $h = \langle ah \rangle$ for (k,n) = 1Here n=10. k = 1, 3, 7, 9If H is a cyclic subgroup of 10 then H= (a) or (a3) or (a7) or (a9) =) There are four choices of 'a' I'my, there are 5 choices for 'b'. =) Total choice for (a,b) = 20, Case-II O(a)=2; O(b)=5Since ZIOD has a unique cyclic subgroup of order 'n' a that subgroup hap only one generator. : gf k is a cyclic group of order 2 then $K = \langle q \rangle$, O(q) = 2. =) There is only one choice for 1a' there me & choices for "b'. =) There are four choices for 10, b) 2) ZIUD EZS hop 24 elts of ader 10, let k be a cyclic subgroup of ZID EZS of order 10. No. of generators of k=4= $\phi(10)$ $o(x_1y)=10$ 7. e 4 eltp of order 10 generate the some subgroup. . NO. of cyclic subgrp of order 10 = 24 = 6 [P. Kalika Notes, available at <u>https://pkalika.wordpress.com/</u>]

[34] [Sylow, Solvable, Simple, EDP, IDP] [P. Kalika Notes, available at https://pkalika.wordpress.com/] Page No. 90 Dale Find the mo. of ellip in <5> (3) Ex-4 ap a subgrp. of Z30 D Z12. Since order of 5 in Z30 18 '6'. Sol" order of 3 in Z12 18 14', =) <5> () (3) his a subgrp. of order 244. $- \frac{1}{2} O(\langle S \rangle \oplus \langle 3 \rangle) = O(\langle S \rangle) O(\langle 3 \rangle)$ = 8,4 = 20 CRITERION FOR LEH TO BE CYCLIC. then 8.2) let bik H be finite cyclic groups. Then we H is cyclic if & only if IM RIHI and me relatively prime. Pto let 141=m & 141=2 =) 1 h + H = 1 k1 · 1 H = mm First Part let hAH be cyclic. The ged (m,n) = 1let ged(m,n) = 4, ged(m,n) = 4since Crip cyclic => => gebr S.t h=<g> =) 191 = m Hjøcyclic = = = henst H= <h> 2 1H1= h. As the eth = m= At, n= ut $= J = \frac{M}{T}, \quad U^2 \xrightarrow{n} T$ 9f(gt) = gt = e=> m/1k = 1+ 1k => t/k Consider 0/4= 9

Page No. 91 Date (gt) = g = g = e =) $O(g^{m_{t}}) = t R O(h^{m_{t}}) = t$. Consider (gra, e2), (q, ht) E LEM $O\left(g^{\gamma}t_{g}\right) = t = O\left(q, h^{\gamma}t\right)$ =) < (g/t, e2) & (e, ht) at two distincts yelic subgrap of UDH of orders 't'. which is a contradiction. t' Any finite cyclic grb. has a unique subgrb of order t]. =) ged (min) = 1. let h= (g) &, (m,n)=1, H= <h} then [gh] = ten [191, 141] = lem (min) = mm = ILEH =) GEH = ((g,h)) =) GEH is a cyclic group. Lorollan: An external direct product hit the Fr---- E hn of a finite no. of finite cyclic. group is cyclic iff thil & Ihi's and relatively prime for itis. Criterion for Zn, n2-- nk & Zn @ Zn @ Zn @ Zm Cor. let M=n,n2--nk then Zm no isomosphik to Zn(+) Zn2 (-) Znk iff ni & nj me relating prine where it.

[35]

Page Na 92 50m Date Zny D Zna D -- + Zne is cyclic it nº 2nj are relatively prime. .: |Znil = ni $|Zn_i| = n_i$ 8 also any 2 finite cyclic grops of Same order me isomosphic therefore -Think & Zn DZn, D- DZn (1) K2 (1) Z3 C Z6 (ii) R2 (R3 (R5 X R30 X R2 (R15 X Z6 PR5 (iii) Z2 (Z2 (Z3) Z3 (Z2) Z6 (Z6) Z6 x Z6 (DZ10 × Z2 DZ3 (+)Z2 DZs (iv) But Z2 D Zgo at Z60 U(n) as an EDP let g(q(s, t) = 1. then Theorem 8.3 VISE ~ ULS) (F) ULE (154) NO. of eltipsin ulmp = \$(m) p(n)=No. of the integers less than n & co-prime to n. [U(8)] = \$(8). 1:1, 3, 5,7 ~ integento Ego less than g and relativity 018) = 4 Co-prime to g 50 | V(8E) = 0(8E)1 U (8) @ U (H) = 1 U (8) [U (H) = \$10, \$1+) Since ged (s,t)=1 =) $\varphi(st) = \varphi(s) \varphi(t)$ =) VISE) = VCO) (DUH)

[36]

93 Page No. Date RULS) (Ult which is 1-1 will be onto. Define f: ULST) -> ULS) () UL+) GA fers= (2 mod s, 2 mod t) well defined let z=y = 1 xmod & = ymod & R xmod t = ymod b EJ (remode, remode) = (ymods, ymodt) =) fesej = feyj. 1-1- let fexy = fex) =) (2mod &, 2emodt) = (ymods, ymodt) =) Demode = ymode & remod t z y modt - jged (s,t)=1 = jxmodst = ymodst $= \frac{3}{3} \frac{8t}{x-y}$ $= \frac{3}{3} \frac{8t}{x-y} = \frac{x-y}{5} = \frac{1}{3} \frac{x-y}{x-y} = 0$ $= \frac{3}{3} \frac{x-y}{x-y} = \frac{1}{3} \frac{x-y}{x-y} = 0$ $= \frac{1}{3} \frac{x-y}{x-y} = \frac{1}{3} \frac{x-y}{x-y} = 0$ ferey) = (reymod 8, rymod t) HM fere for) = (xemods, xmodt) (ymods, ymodt) - [semeds] (ymeds) mods, (nmodt) = (xymods, xymedt) [" (amodn) (bring n) mod n = ab modn 2) fis an Jsomephic Z) U(St) X U(B). DULH.

[37]

	[38] [Sylow, Solvable, Simple, EDP, IDP]
	Date .
E4 -	$U[105] \approx U[7] \oplus U[15) \qquad (7,15] = 1$
G=	$U(105) \approx U(21) \oplus U(5) \qquad (21,5) = 1$
	ULIOS) ~ ULBI DULFJ DULS)
*	Consider Ukin) = jreinn jr=1mrdk}
	where kis a divisor of 1n1:
	Ukin) is a subgrip of Ulm).
	S PANAY = STAN
Theorem	
8.3	Usist RULH & Utlat RULA)
-1	Define f: Uslot) -> ULH
Pf:	
	firy = re mod t
	g: Ut(st) -> U(s) or gen= remads.
	PT fry ane isomerphic
Conllon	Let $M = 3\gamma_{n_2} - 3\gamma_k$ ushere ged $(\gamma_i, \gamma_j) = 1$ for $i \neq j$.
(b)olicy)	Jhen (
	ULM) ~ ULMI) (DULMI) (DULMI) (DULMI)
Note:	(1) レレンズ {0}
	(ii) $U(4) \approx Z_{2}$
	(iii) $U(2^n) \propto Z_1 \bigoplus Z_{2^{n-2}} \qquad \forall n \ge 3$
<u>ــــــــــــــــــــــــــــــــــــ</u>	for) Ulpm ~ Zpm-pm for add prime p.
Eg	Show ULIOS) ~ Z2 O Zu O ZG.
	U(105) = U(3.7.5)
	$\approx U(3) \oplus U(5) \oplus U(7)$
	~ Z2 @ Zy @ Z6 (By Aborne)
	U(720) = U(5.9.16)
	$\approx U(F) \oplus U(3^{2}) \oplus U(2^{2})$
	~ TO ZETZEZZZZZ

[Sylow, Solvable, Simple, EDP, IDP]

[39] Page No. 95 Date There are 96 Automorphism of Z220 of order 12. Since U(n) & Aut (Zn) UL720) & Aut (Z720) are g6 elts of U(720) of order 12. • 1 Now U(720) C Z2 DZ4 DZ6 DZ4 It is sufficient to find elts of order 12 in ZI DZYD ZO DZY let (a, b, L, d) E Z2 DZ4 DZ6 DZ4 be of order 12. 1-e ||a,b,c,d|| = 12.Now, (a, b, c, d) [= lem (101, 161, 101, 101] Since, a (-Z2 . . a=0, cr @=1 : lal = 1 ar 2 =) len (1a1,1b1, 1c1, ld1) = len (1b1,1c1,1d) 0(6)=4,0(0)=3 ~ 6,0(d)=2 ~ 4 Coser 6 Astribury there are 2 choices for b 4 _____ 4 - Fotal choices = 2.4.4 = 32 Cove-II, O(b)=102, O(c)=346, O(d)=4 There are 2 choices for b. ____ C 4 2 fotal Chrices = 2,4,2 = 16 2

[40] [Sylow, Solvable, Simple, EDP, IDP] 96 Page No. Date. Hence lem (161,101, 19] =12 3 in 32+16 = 48 ways Since 0(9)=1 or 2. lena (161, 101, 101) = 12 in 48×2=96 ways I There are go have Automorphism of Z120 of order 121 Chapter- End * * CHAPTER- 9 (only, Internal Direct Product) (8-181) let H&K be normal subgrps of a gop. a. Then a is the internal direct product OFHAK & CE=HXK Jf (i) G = HK K (ii) HAK = Ses Note: - for Internet direct product :- HEK must be subgops of the same group. For For External Direct product : - H&K can be any groups, $bef G_2 = S_3, \\ = \{ I, (12), (23), (13), (123), (132) \}$ Ex: $let H = \langle (123) \rangle = \hat{\xi} \hat{\tau}, (123), (132)$ $K = \langle (12) \rangle = \{ I, (12) \}$ Cr is intermal direct product of H&K where Cr ~ H @K $Poep MK = \{(123)\}((12)\}$ = $\{F_{1}(n), (123), (123), (132), (13$

[41] [Sylow, Solvable, Simple, EDP, IDP] Page No. 97 Date $HK = \{ I, (12), (13), (23), (123), (132) \}$ Now Here a= HK & HAK = Se] But not MEK - HOK is yelic & Sz is not $HER = \{(I,I), (123), (12)\}, ((23), I), (I, (14))$,(1132), E), (1132),(12))? 1H@k)= 6 |(132),(12)| = 6HOK is yell' But So is not . There is no elt. of order 6 in sz =) h is not an IDP. (as k is not normal) Def? Internal Direct Product of HIXH2X X Hallet H1, H2, ---, Hn be finite collection of normal Subgrp of G. Then G is the IDP of HIJH2 J-- Wn Jf (i) $G_2 = H_1 H_2 \dots H_n$ (ii) $(H_1, H_2, \dots H_i)$ $\cap H_{i+1} = \{e\}$ $\forall i = 1, 2, 3 \dots H_i$ or if G_2 is an fDR of $H_1, H_2, \dots H_n$ duen $H(nH) = \{e\} \quad \forall i \neq j$ lemma 1: - let a be the IDP of HEK, then elements of HEK commute i.e hk=kh VHEH, KEK PA: GIB FDR OF H&K HACL&KAG Rh=HKRHOK=fe] TPI hK=Kh VhEH&KEK. consider, hkhiki = h (khiki) EhH

Page No. 98 Date · KHTY EKHKT YKEK JKEL dag HAR J KHKI SH JKHIETE H [Isly, hk,htkt = (hkht)kt E Kkt =KLKON) = hkhtkt CHAK = {e} =) hkh1k1 = e =) hK = Kh ¥hEH, KEH So, If a is IDP of H, H2, -- Hn, then Result hihi = hjhi + hichi, hi CHi, j#J lemma-2. Jf Co is the IDP of H, H2, - Hm. then each nember of a can be expressed uniquely as hybry --, ha where h'EHi'. G is IDP of HUH2, -- Hm =) (2= H, XH2X--* Hm. Uff-(i) C2 = HiH2 -- Hn: & HinH; = ses i = j ~ [[H; H2-++;] (Hi+]={e}, i=1,2,3- n+. Ut seeh -i xEH, H2--. HM =) ~ = h, h2 -- hn for some hi C-Hi Coniqueness! Let x= hip-- hm, hi, hi + Hi & r= h' h' -- hn 3 h1 h2 -- hz = h1 h2 - hn $(h_1h_2 - h_{n_1})h_2(h_n)^{-1} = (h_1'h_2' - h_{n_1})$ = h_(m') - = (h, h_- h_n) - (hi h'- h')

[43] [Sylow, Solvable, Simple, EDP, IDP] Page No. 99 Date $= (h_1'h_1)(h_2'h_2) - - (h_{n_1}h_{n_2})$ = chalhall & H, H2-- Hand = hnlhild EHm N (HiH2r- Hm+) = feg = hn(hn) = e hm = hm 2) hihr - hm = hihr -- hn-1 $h_{1}=h_{1}', h_{2}^{*}=h_{2}', \dots h_{n}=h_{n}'$ Inly Theorem HIXH2X---XHn ~ H, EH2 D--- DHn. Sf a (9.6) Group his the IDP of a finite no. of 2014 subgoods H, H2, ..., Hn then Cr is isomorphic to the external Direct product of H, H2, - Hn. pf: - TO HIEH2 -- EHM -(1)a is the ID! of Hithy .-. Hn AB =) HiAh Ví & h= H,H2--H2 & (H,H2--Hi) OHi+1 = Se? = i= 1,2,3. m-1 Petine a map · \$: 47 H, DH2 D. DH2 T.P ap \$ (h, h2 -- hm) = (h1, h2, -- hm) Dis well define, 1-1, HM & onto, TB well-) chine 21-1 let hihr- hn= hihr- hn (=) hi= hj vil By lemma (=) $(h_1, h_2, -h_m) = (h_1', h_2', h_m')$ (=) \$ (h, h2.-hm) = \$ (h, h2'--hm)] H.M Q((hyh2--- hn)(hih2-- hn)) = \$ (huh h2h2 -- hnhis) (By I temmis]

100 Page No. Date = (hihi hahir - huhu) = (h, h, -- hn) (h! h2, -- hn') = \$ (h_h2 -- hn) \$ \$ (h'h' -- hn') let (J, Y2, -- Ym) CH, DH2D --- DHn onto = yieHi → J1>42--- Yn (= H1, H2, --- Hn St $(\forall , \forall _2 - \forall n) = (\forall _1, \forall _2, - \forall n)$ =) Cr & HIDH2D- DHn Result: If h=H, DH. D- DHn then h can be expressed of the IDR of subgroups isomorphic to H1, H2, --- Hn. $gf G = H_1 \oplus H_2$ EJ. then a = H, xH2 where H, = H, D Se} H2= Ste?(DH2 HIGHI & H2 & H2 Express U(105) &p IDR of 2 subgroupp. Eq. ULIOS)= ULIS, 7) ~ ULIS) @VL7) ["" U(st) = U(s) @ U(H), , (s, t)=1 ALOO, USION RULT) SO U, (105) ≈ U(15) & U,5 (105) ≈ U(7) 2) U(10'S) & UZ (105) (D) UIS (105) ~ "7(105) × U15(105) r. H, DH2 ~ HIXH2 uf H1&H2 and subgop of hif k/n >Ukin) <U(n) ALOO, ULIOS) = U(5:21) = U_5(105) × U2+(105) ~ U(21) () U(5) 1

[44]

	[45] [Sylow, Solvable, Simple, EDP, IDP]
	1121 (F) 115). Page No. 102
	\mathcal{V} $\mathcal{V}(21) \oplus \mathcal{V}(5)$. $\mathcal{D}ate$ $\mathcal{D}ate$
Ego	Express Ulios) as IDP of 3 subgras.
Ø	
	U(105) = U(3.5.7)
	$= U_{35}(105) \times U_{21}(105) \times U_{15}(105)$
	= {1,7,1 } x {1,22, 43,64 } x
	{ 1,16,31,16,61,767
	~ U(3) (DU(5) (DU(7)
	[P. Kalika Notes, available at https://pkalika.wordpress.com/]
(1)	Show that GEH is abelian iff h &H
	are abelian.
801m	Let GEH be abelian.
	let (g1,h1) & (g2,h2) E G DH where
	81082 EU2, h, h2 EH
	$\mathcal{N}(u, (\theta_1, h_1)(\theta_2, h_2)) = (\theta_2, h_2)(\theta_1, h_1)$
	$= (g_{1}g_{2}, h_{1}h_{2}) = (g_{2}g_{1}, h_{2}h_{1})$
v	
	∃ gigz = gigi i la 2H one Abelian.
<u> </u>	$h_1 h_2 = h_2 h_1 \qquad \neg \neq c$
(=)	Ut G2H be Abelian.
	Consider (g, h,)(g, h2) = (g,g2, h, hi)
	$\forall (g, h_1), g_2, h_2) \in b \oplus \mathcal{H}$
	$= (g_2 g_1, h_2, h_1)$
	$= (g_2, h_2)(g_1, h_1)$
60	
(5)	frome or Disprone that ZOZ is a
	Cyclic gooup.
010	let if possible ZEZ is yelic.
110	⇒ J (a, b) EZEZ sit ZEZ = <(a, b)
	(i) if a=b.

[Sylow, Solvable, Simple, EDP, IDP]

Page 26, 102 $z(D) z = \langle (a, a) \rangle$ Date then (min) E ZEDZ comit be written as integral multiple of (a, a) in many way gf atb. (1)) Then all eltip of the form (m,m) don't belong to ZOZ, "" (m,m) Caro't be writtens as integral multiple of carb. = RE Z Is not cyclic. Q.6 Show that Z3 @Z2 # Z4 @Z4. |ZOBZ21=16 = |Zy@Zy] order of ellip of Zz (DZ2 are 1,2,4,3 P.f : -_ Zy DZy are 1,2,4 There is no elt. of order 8 in Zy @ Zy ZB DEL & ZY DZY hshait is the order of any non-identity elt. of OFT Z3 @ Z3 @ Z3 29 let (a, b, c) be any non-id elt. of Pf:-Z3DZ3DZ3' O(a, b, c) = lem [121, 161, 101] But a, b, C E Z3, the only postsible order one 1 & 3. as $(a, b, c) \neq (0, 0, 0)$ " at least one of 121,167,101 v83. =) O(a,b,c) = lem [1a1,1b1, 1c1] = 3. 2014 How many subgroup of order 4 does (13 Zy (Zz = {10,0), (1,0), (2,0), (3,0), 10,1) 8th (11),12,1), (3,1)? <(a,b) > is a subgrocip of Zy (D) Z2 5f 1(a,b) 1 24

[46]

[47] [Sylow, Solvable, Simple, EDP, IDP] P. Kalika Notes, available at https://pkalika.wordpress.com/] Page No. 103 Date elts of order 4 in Zy @ Zz and (1,1), (1,0), (3,0), (3,1) [Result :-[men cr=cax; then cr=cak; iff (kin)=1] let H be a group subger of ZOP 72 of order 4. H= < (1,1)> then, $H = \langle (1,1)^3 \rangle = \langle (3,3) \rangle = \langle (3,1) \rangle$. Subgops of order 4 generated by (1,1) R (319) are same. <(1,1)> = <(3,1)> Now, the subgep. K= <(1,0) / 1k1=4 = < (1,0)3> = < (3,0) =) NO. of distinct cyclic gops of order 4 ae, 14 = <(1,1)> $k = \langle (1,0) \rangle$ A180, L= {(0,0), (0,1), (2,0), (2,1)} (18 a non-cyclic gop of onder 4. NZ4 DZ2 has 3 subgsp. of order 4. find all subgoods of order 3 in Zat Zz. 2517 Crossupe of prime order an eyelic Now, subgroup of order 3 must be cyclic. 80, we have to find agelic gross of order 3 in ZA DZ3 " let (a, b) & Z3 () Z3 8, 6 1(a, b) 1=3 1 (9, 5) 1 = lem [121, 161] 1a1=1. 10123 a1 = 1 = 4 3 16721083 15121 1 ay F3 101=7 19123

[48] [Sylow, Solvable, Simple, EDP, IDP] Ch-9/ hallion Page No. 104 Date elts. of order 3 in Zg EZz a $(P_{1}), (0, 2), (03, 0), (3, 1), (3, 2), (6, 0), (6, 1),$ (6,2). Now $H_1 = \langle (0,1) \rangle = \langle (0,1)^2 \rangle = \langle (0,2)^2 \rangle$ $[n=\langle a \rangle 2 \langle a^k \rangle \text{ off } (k,n)=1$ 121=n = < (6,0) > $H_2 = \langle (3,0) \rangle = \langle (3,0)^2 \rangle$ H3 = <(3,1)> = <(3,1)2> = <(6,2)> Hy = < (3,2)> = < (3,2)2> = ((6,4)) = (611) ~ No. of distinct supports. of order 3 >, ((3,2)> and <(0,1)>, <(3,0)>, <(3,1) · B3 from that J3 D Dy of Dry Every Rotation in Day has order 24, Now, we'll prove that D3 Dy has no elt of order 24. Any Rotation in D3 has order 3 & reflection about line of symmetry has order 2 -', Mare order of any elt. of D3= 3. 11/4 Dy = Max order of .). ony elf. of D3 Dy = lem (3,4) I12: no, ett. of order 24 in -1 There is Ð Day & D3 DDy. D3 (D) Dy Suppose a 18 a group of order 4. d'rer = e for sech Brone that h is Bomosphic to Z2 (PZ2.

[Sylow, Solvable, Simple, EDP, IDP]

Page No. 105 Date Pf: XEG, 8 x2=e fxeh. =) スニメイ =) x=x⁻ 9f every ett. is its own innerse then h is obelian. Now, h is a junite Now, h is a pobelian gop of order 4. =) GRZy Cr Cr R Z2 DZ2. Now, Zy had an elt of order 4. But a had no. elt. of order 4. =) a f Zy: -: a g Z_D Z_2. Express ULISS) as an EDR of yelic addition graps. of the form In U(165) = U(3.5.11) U(st) ~ U(s) @ U(t) $= U(165) \approx U(3) \oplus U(5) \oplus U(1)$ Also, Ulp) & Zp-pn7 $U[165] = Z_{3'-3}^{1} \oplus Z_{5'-3} \oplus Z_{1'-10} \oplus Z_{1'-10}$ = Z2 DZy DZ10 Express Uli65) and an EDP of U-groups. Q.41 $U(165) = U(3.5.11) = U(3) \oplus U(5) \oplus U(1)$ = U(IS) (U(I)) = (1(33) D U(5) * * ×

Download JAM/NET/GATE/SET...etc Que. Papers at *https://pkalika.in/que-papers-collection/* **Telegram:** *https://t.me/pkalika_mathematics* **FB Page:** <u>https://www.facebook.com/groups/pkalika/</u>

[49]

Some Useful Links:

- 1. Free Maths Study Materials (https://pkalika.in/2020/04/06/free-maths-study-materials/)
- 2. BSc/MSc Free Study Materials (https://pkalika.in/2019/10/14/study-material/)
- **3. MSc Entrance Exam Que. Paper:** (https://pkalika.in/2020/04/03/msc-entrance-exam-paper/) [JAM(MA), JAM(MS), BHU, CUCET, ...etc]
- **4. PhD Entrance Exam Que. Paper: (**https://pkalika.in/que-papers-collection/) [CSIR-NET, GATE(MA), BHU, CUCET,IIT, NBHM, ...etc]
- **5. CSIR-NET Maths Que. Paper:** (https://pkalika.in/2020/03/30/csir-net-previous-yr-papers/) [Upto 2019 Dec]