$\mathbb{N}=\{1,2, \ldots\}$.
$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$.
$\mathbb{Q}=$ the set of rational numbers.
$\mathbb{R}=$ the set of real numbers.
$\mathbb{R}^{n}=$ the n-dimensional real space with the Euclidean topology.
$\mathbb{C}=$ the set of complex numbers.
$\mathbb{C}^{n}=$ the n-dimensional complex space with the Euclidean topology.
$M_{n}(\mathbb{R}), M_{n}(\mathbb{C})=$ the vector space of $n \times n$ real or complex matrices, respectively.
$f^{\prime}, f^{\prime \prime}=$ the first and second derivatives of the function f, respectively.
$f^{(n)}=$ the n th. derivative of the function f.
\int_{C} stands for the line integral over the curve C.
$I_{n}=$ the $n \times n$ identity matrix.
$A^{-1}=$ the inverse of an invertible matrix A.
$S_{n}=$ the permutation group on n symbols.
$\hat{i}=(1,0,0), \hat{j}=(0,1,0)$ and $\hat{k}=(0,0,1)$.
$\ln x \neq$ the natural logarithm of x (to the base e).
$|X|=$ the number of elements in a finite set X.
$\mathbb{Z}_{n}=$ the additive group of integers modulo n.
$\arctan (x)$ denotes the unique $\theta \in(-\pi / 2, \pi / 2)$ such that $\tan \theta=x$.
All vector spaces are over the real or complex field, unless otherwise stated.

SECTION - A

MULTIPLE CHOICE QUESTIONS (MCQ)

Q. 1 - Q. 10 carry one mark each.

Q. 1 Let $0<\alpha<1$ be a real number. The number of differentiable functions $y:[0,1] \sim \mathcal{O}, \infty)$, having continuous derivative on $[0,1]$ and satisfying

$$
\begin{aligned}
y^{\prime}(t) & =(y(t))^{\alpha}, \quad t \in[0,1] \\
y(0) & =0
\end{aligned}
$$

is
(A) exactly one.
(B) exactly tivo.
(C) finite but more than two.
(D) infinite.
Q. 2 Let $P: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $P(x)>\emptyset$ for all $x \in \mathbb{R}$. Let y be a twice differentiable function on \mathbb{R} satisfying $y^{\prime \prime}(x)+P(x) y^{\prime}(x)-y(x)=0$ for all $x \in \mathbb{R}$. Suppose that there exist two real numbers $a, b(a<b)$ such that $y(a)=y(b)=0$. Then
(A) $y(x)=0$ for all $x \in[a, b]$.
(B) $y(x)>0$ for all $x \in(a, b)$.
(C) $y(x)<0$ for all $x \in(a, b)$.
(D) $y(x)$ changes sign on (a, b).
Q. 3 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(x)=f(x+1)$ for all $x \in \mathbb{R}$. Then
(A) f is not necessarily bounded above.
(B) there exists a unique $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
(C) there is no $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.
(D) there exist infinitely many $x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=f\left(x_{0}\right)$.

Q. 4 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that for all $x \in \mathbb{R}$,

$$
\begin{equation*}
\int_{0}^{1} f(x t) d t=0 \tag{*}
\end{equation*}
$$

Then
(A) f must be identically 0 on the whole of \mathbb{R}.
(B) there is an f satisfying $(*)$ that is identically 0 on $(0,1)$ but not identicaly 0 on the whole of \mathbb{R}.
(C) there is an f satisfying $(*)$ that takes both positive and negative values.
(D) there is an f satisfying $(*)$ that is 0 at infinitely many points, but is notidentically zero.
Q. 5 Let p and t be positive real numbers. Let D_{t} be the closed disc ofradius t centered at $(0,0)$, i.e., $D_{t}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq t^{2}\right\}$. Define

$$
I(p, t)=\iint_{D_{t}} \frac{d x d y}{\left(p^{2}+x^{2}+y^{2}\right)^{\beta}}
$$

Then $\lim _{t \rightarrow \infty} I(p, t)$ is finite
(A) only if $p>1$.
(B) only if $p=1$.
(C) only if $p<1$.
(D) for no value of p.
Q. 6 How many elements of the group \mathbb{Z}_{50} have order 10 ?
(A) 10
(B) 4
(C) 5
(D) 8
Q. 7 For every $n \in \mathbb{N}$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be a function. From the given choices, pick the statement that is the negation of
"For every $x \in \mathbb{R}$ and for every real number $\epsilon>0$, there exists an integer $N>0$ such that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right|<\epsilon$ for every integer $p>0$."
(A) For every $x \in \mathbb{R}$ and for every real number $\epsilon>0$, there does not exist any integer $N>0^{\circledR}$ such that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right|<\epsilon$ for every integer $p>0$.
(B) For every $x \in \mathbb{R}$ and for every real number $\epsilon>0$, there exists an integer $N>0$ हैuch that $\sum_{i=1}^{p}\left|f_{N+i}(x)\right| \geq \epsilon$ for some integer $p>0$.
(C) There exists $x \in \mathbb{R}$ and there exists a real number $\epsilon>0$ such that for every integer $N>0$, there exists an integer $p>0$ for which the inequality $\sum_{i=1}^{p} \mid f_{N \sim i}(x) \in \in \epsilon$ holds.
(D) There exists $x \in \mathbb{R}$ and there exists a real number $\epsilon 0$ such that for every integer $N>0$ and for every integer $p>0$ the inequality $\sum_{i=1}^{R}\left|f_{N+i}(x)\right| \geqslant c$ holds.
Q. 8 Which one of the following subsets of \mathbb{R} has a non-empty interior?
(A) The set of all irrational numbers in \mathbb{R}.
(B) The set $\{a \in \mathbb{R}: \sin (a)=1\}$.
(C) The set $\left\{b \in \mathbb{R}: x^{2}+b x+1=0\right.$ has distinct roots $\}$.
(D) The set of all rational numbers in \mathbb{R}.
Q. 9 For an integer $k \geq 0$, let P_{k} denote the vector space of all real polynomials in one variable of degree less than or equal to k. Define a linear transformation $T: P_{2} \longrightarrow P_{3}$ by

$$
T f(x)=f^{\prime \prime}(x)+x f(x)
$$

Which one of the following polynomials is not in the range of T ?
(A) $x+x^{2}$
(B) $x^{2}+x^{3}+2$
(C) $x+x^{3}+2$
(D) $x+1$
Q. 10 Let $n>1$ be an integer. Consider the following two statements for an arbitrary $n \times n$ matrix A with complex entries.
I. If $A^{k}=I_{n}$ for some integer $k \geq 1$, then all the eigenvalues of A are $k^{\text {th }}$ roots of unity.,
II. If, for some integer $k \geq 1$, all the eigenvalues of A are $k^{\text {th }}$ roots of unity, then $A^{k} \times{ }^{\ell} I_{n}$.

Then
(A) both I and II are TRUE.
(B) I is TRUE but II is FALSE.
(C) I is FALSE but II is TRUE.
(D) neither I nor II is TRUE.

Q. 11 - Q. 30 carry two marks each.

Q. 11 Let $M_{n}(\mathbb{R})$ be the real vector space of all $n \times n$ matrices with real entries, $n \geq 2$.

Let $A \in M_{n}(\mathbb{R})$. Consider the subspace W of $M_{n}(\mathbb{R})$ spanned by $\left\{I_{n}, A, A^{2}, \ldots\right\}$. Then the dimension of W over \mathbb{R} is necessarily
(A) ∞.
(B) n^{2}.
(C) n.
(D) at mostrin
Q. 12 Let y be the solution of

$$
\begin{array}{r}
(1+x) y^{\prime \prime}(x)+y^{\prime}(x)-\frac{1}{1+x} y(x)=0 \\
y(0)=1, y^{\prime}(0)=0
\end{array}
$$

Then
(A) y is bounded on $(0, \infty)$.
(B) y is bounded on $(-1,0]$.
(C) $y(x) \geq 2$ on $(-1, \infty)$.
(D) y attainsuts minimum at $x=0$.
Q. 13 Consider the surface $S=\left\{(x, y, x y) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1\right\}$. Let $\vec{F}=y \hat{i}+x \hat{j}+\hat{k}$. If \hat{n} is the continuous unit normal field to the surface S with positive z-component, then

$$
\iint_{S} \vec{F} \cdot \hat{n} d S
$$

equals
(A) $\frac{\pi}{4}$.
(B) $\frac{\pi}{2}$.
(C) π.
(D) 2π.
Q. 14 Consider the following statements.
I. The group $(\mathbb{Q},+)$ has no proper subgroup of finite index.
II. The group $(\mathbb{C} \backslash\{0\}, \cdot)$ has no proper subgroup of finite index.

Which one of the following statements is true?
(A) Both I and II are TRUE.
(B) I is TRUE but II is FALSE.
(C) II is TRUE but I is FALSE.
(D) Neither I nor II is TRUE.
Q. 15 Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a bijective map such that

$$
\sum_{n=1}^{\infty} \frac{f(n)}{n^{2}}<+\infty
$$

The number of such bijective maps is
(A) exactly one.
(B) zero.
(C) finite but more than one.
(D) infinite.
Q. 16 Define

$$
S=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)!
$$

Then
(A) $S=1 / 2$.
(B) $S=1 / 4$.
(C) $S=10$
(D) $S=3 / 4$.
Q. 17 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function such that for all $a, b \in \mathbb{R}$ with $a<b$,

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}\left(\frac{a+b}{2}\right)
$$

Then
(A) f must be a polynomial of degree less than or equal to 2 .
(B) f must be a polynomial of degree greater than 2 .
(C) f is not a polynomial.
(D) f must be a linear polynomial.

Q. 18 Consider the function

$$
f(x)=\left\{\begin{array}{cl}
1 & \text { if } x \in(\mathbb{R} \backslash \mathbb{Q}) \cup\{0\} \\
1-\frac{1}{p} & \text { if } x=\frac{n}{p}, n \in \mathbb{Z} \backslash\{0\}, p \in \mathbb{N} \text { and } \operatorname{gcd}(n, p)=1
\end{array}\right.
$$

Then
(A) all $x \in \mathbb{Q} \backslash\{0\}$ are strict local minima for f.
(B) f is continuous at all $x \in \mathbb{Q}$.
(C) f is not continuous at all $x \in \mathbb{R} \backslash \mathbb{Q}$.
(D) f is not continuous at $x=0$.
Q. 19 Consider the family of curves $x^{2}-y^{2}=k y$ with parameter orthogonal trajectory to this family passing through $(1,1)$ is given by
(A) $x^{3}+3 x y^{2}=4$.
(B) $x^{2}+2 x y=3$.
(C) $y^{2}+2 x^{2} y=3$.
(D) $x^{3}+2 x y^{2}=3$.
Q. 20 Which one of the following statements is true?
(A) Exactly half of the elements in any even order subgroup of S_{5} must be even permutations.
(B) Any abelian subgroup of S_{5} is trivial.
(C) There exists a cyclic subgroup of S_{5} of order 6 .
(D) There exists a normal subgroup of S_{5} of index 7 .
Q. 21 Let $f:[0,1] \rightarrow[0, \infty)$ be a continuous function such that

$$
(f(t))^{2}<1+2 \int_{0}^{t} f(s) d s, \text { for all } t \in[0,1]
$$

Then
(A) $f(t)<1+t$ for all $t \in[0,1]$.
(B) $f(t)>1+t$ for all $t \in[0,1]$.
(C) $f(t)=1+t$ for all $t \in[0,1]$.
(D) $f(t)<1+\frac{t}{2}$ for all $t \in[0,1]$.
Q. 22 Let A be an $n \times n$ invertible matrix and C be an $n \times n$ nilpotent matrix. If $X=\left(\begin{array}{ll}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right)$ is a $2 n \times 2 n$ matrix (each $X_{i j}$ being $n \times n$) that commutes with the $2 n \times 2 n$ matrix $B \subsetneq$ $\left(\begin{array}{cc}A & 0 \\ 0 & C\end{array}\right)$, then
(A) X_{11} and X_{22} are necessarily zero matrices.
(B) X_{12} and X_{21} are necessarily zero matrices.
(C) X_{11} and X_{21} are necessarily zero matrices.
(D) X_{12} and X_{22} are necessarily zero matrices.
Q. 23 Let $D \subseteq \mathbb{R}^{2}$ be defined by $D=\mathbb{R}^{2} \backslash\{(x, 0): x \in \mathbb{R}\}$ Considen the function $f: D \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=x \sin \frac{1}{y}
$$

Then
(A) f is a discontinuous function on D.
(B) f is a continuous function on D and cannot be extended continuously to any point outside D.
(C) f is a continuous function on D and can be extended continuously to $D \cup\{(0,0)\}$.
(D) f is a continuous function on D and can be extended continuously to the whole of \mathbb{R}^{2}.
Q. 24 Which one of the following statements is true?
(A) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{R},+)$.
(B) $(\mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$.
(C) $(\mathbb{Q} / \mathbb{Z},+)$ is isomorphic to $(\mathbb{Q} / 2 \mathbb{Z},+)$.
(D) $(\mathbb{Q} / \mathbb{Z},+)$ is isomorphic to $(\mathbb{Q},+)$.
Q. 25 Let y be a twice differentiable function on \mathbb{R} satisfying

$$
\begin{aligned}
& y^{\prime \prime}(x)=2+e^{-|x|}, \quad x \in \mathbb{R} \\
& y(0)=-1, \quad y^{\prime}(0)=0
\end{aligned}
$$

Then
(A) $y=0$ has exactly one root.
(B) $y=0$ has exactly two roots.
(C) $y=0$ has more than two roots.
(D) there exists an $x_{0} \in \mathbb{R}$ such that $y\left(x_{0}\right) \geq y(x)$ for all $x \in \mathbb{R}$.
Q. 26 Let $f:[0,1] \rightarrow[0,1]$ be a non-constant continuous function such that $t^{\circ} \circ f=f$. Define

$$
E_{f}=\{x \in[0,1]: f(x)=x\}
$$

Then
(A) E_{f} is neither open nor closed.
(B) E_{f} is an interval.
(C) E_{f} is empty.
(D) E_{f} need not be an interval.
Q. 27 Let g be an element of S_{7} such that g commutes with the element $(2,6,4,3)$. The number of such g is
(A) 6 .
(B) 4 .
(C) 24 .
(D) 48 .
Q. 28 Let G be a finite abelian group of odd order. Consider the following two statements:
I. The map $f: G \rightarrow G$ defined by $f(g)=g^{2}$ is a group isomorphism.
II. The product $\prod_{g \in G} g=e$.
(A) Both I and II are TRUE.
(B) I is TRUE but II is FALSE.
(C) II is TRUE but I is FALSE.
(D) Neither I nor II is TRUE.
Q. 29 Let $n \geq 2$ be an integer. Let $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be the linear transformation defined by

$$
A\left(z_{1}, z_{2}, \ldots, z_{n}\right)=\left(z_{n}, z_{1}, z_{2}, \ldots, z_{n-1}\right)
$$

Which one of the following statements is true for every $n \geq 2$?
(A) A is nilpotent.
(B) All eigenvalues of A are of modulus 1 .
(C) Every eigenvalue of A is either 0 or 1 .
(D) A is singular.
Q. 30 Consider the two series

$$
\text { I. } \sum_{n=1}^{\infty} \frac{1}{n^{1+(1 / n)}} \text { and II. } \sum_{n=1}^{\infty} \frac{1}{n^{2-n^{1}} \mid k}
$$

Which one of the following holds?
(A) Both I and II converge.
(C) I converges and II diverges.
(B) Both I and II diverge.
(D) I diverges and II converges.

SECTION - B
 MULTIPLE SELECT QUESTIONS (MSQ)

Q. 31 - Q. 40 carry two marks each.

Q. 31 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function with the property that for every $y \in \mathbb{R}$, the value of the expression

$$
\sup _{x \in \mathbb{R}}[x y-f(x)]
$$

is finite. Define $g(y)=\sup _{x \in \mathbb{R}}[x y-f(x)]$ for $y \in \mathbb{R}$. Then
(A) g is even if f is even.
(B) f must satisfy $\operatorname{Sim}_{x \mid \rightarrow \infty} \frac{f(x)}{|x|} s^{2}+\infty$.
(C) g is odd if f is even.
(D) f mustsatisfy $\lim _{x|c|}^{|x|}=-\infty$.
Q. 32 Consider the equation

$$
x^{2021}+x^{2020}+\cdots+x-1=0
$$

Then
(A) all real roots are positive.
(B) exactly one real root is positive.
(C) exactly one real root is negative.
(D) no real root is positive.
Q. 33 Let $D=\mathbb{R}^{2} \backslash\{(0,0)\}$. Consider the two functions $u, v: D \rightarrow \mathbb{R}$ defined by

$$
u(x, y)=x^{2}-y^{2} \text { and } v(x, y)=x y .
$$

Consider the gradients ∇u and ∇v of the functions u and v, respectively. Then
(A) ∇u and ∇v are parallel at each point (x, y) of D.
(B) ∇u and ∇v are perpendicular at each point (x, y) of D.
(C) ∇u and ∇v do not exist at some points (x, y) of D.
(D) ∇u and ∇v at each point (x, y) of D span \mathbb{R}^{2}.
Q. 34 Consider the two functions $f(x, y)=x+y$ and $g(x, y)=x y-16$ defined on \mathbb{R}^{2}. Then
(A) the function f has no global extreme value subject to the condition $g=0$.
(B) the function f attains global extreme values at $(4,4)$ and $(-4,-4)$ subject to the condition $g=0$.
(C) the function g has no global extreme value subject to the condition $f=0$.
(D) the function g has a global extreme value at $(0,0)$ subject to the condition $f=0$.
Q. 35 Let $f:(a, b) \rightarrow \mathbb{R}$ be a differentiable function on (a, b). Which of the followidg statements is/are true?
(A) $f^{\prime}>0$ in (a, b) implies that f is increasing in (a, b),
(B) f is increasing in (a, b) implies that $f^{\prime}>0$ in (a, b).
(C) If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then there exists a $\delta 0$ such that $f(x)>f\left(x_{0}\right)$ for all $x \in\left(x_{0}, x_{0}+\delta\right)$.
(D) If $f^{\prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$, then f is increasing in a neighbourhood of x_{0}.
Q. 36 Let G be a finite group of order 28. Assume that G contains a subgroup of order 7. Which of the following statements is/are true?
(A) G contains a unique subgroup of order 7 .
(B) G contains a normal subgroup of order 7 .
(C) G contains no normal subgroup of order 7 .
(D) G contains at least two subgroups of order 7 .
Q. 37 Which of the following subsets of \mathbb{R} is/are connected?
(A) The set $\{x \in \mathbb{R}: x$ is irrational $\}$.
(B) The set $\left\{x \in \mathbb{R}: x^{3}-1 \geq 0\right\}$.
(C) The set $\left\{x \in \mathbb{R}: x^{3}+x+1 \geq 0\right\}$.
(D) The set $\left\{x \in \mathbb{R}: x^{3}-2 x+1 \geq 0\right\}$.
Q. 38 Consider the four functions from \mathbb{R} to \mathbb{R} :

$$
f_{1}(x)=x^{4}+3 x^{3}+7 x+1, \quad f_{2}(x)=x^{3}+3 x^{2}+4 x, \quad f_{3}(x)=\arctan (x)
$$

and

$$
f_{4}(x)= \begin{cases}x & \text { if } x \notin \mathbb{Z} \\ 0 & \text { if } x \in \mathbb{Z}\end{cases}
$$

Which of the following subsets of \mathbb{R} are open?
(A) The range of f_{1}.
(B) The range of f_{2}.
(C) The range of f_{3}.
(D) The range of $f_{4} 5$
Q. 39 Let V be a finite dimensional vector space and $\mathbb{Z}: V S$ bé a tinear transformation. Let $\mathcal{R}(T)$ denote the range of T and $\mathcal{N}(T)$ denote the null space $\hat{v} \in V: T v=0\}$ of T. If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, then which of the following is/are necéssarily true?
(A) $\mathcal{N}(T)=\mathcal{N}\left(T^{2}\right)$.
(B) $\mathcal{R}(T)=\mathcal{R}\left(T^{2}\right)$.
(C) $\mathcal{N}(T) \cap \mathcal{R}(T)=\{0\}$.
(D) $\mathcal{N}(T)=\{0\}$.
Q. 40 Let $m>1$ and $n>1$ be integers. Let A be an $m \times n$ matrix such that for some $m \times 1$ matrix b_{1}, the equation $A x=b_{1}$ has infinitely many solutions. Let b_{2} denote an $m \times 1$ matrix different from b_{1}. Then $A x=b_{2}$ has
(A) infinitely many solutions for some b_{2}.
(B) a unique solution for some b_{2}.
(C) no solution for some b_{2}.
(D) finitely many solutions for some b_{2}.

SECTION - C
 NUMERICAL ANSWER TYPE (NAT)

Q. 41 - Q. 50 carry one mark each.

Q. 41 The number of cycles of length 4 in S_{6} is \qquad .
Q. 42 The value of

$$
\lim _{n \rightarrow \infty}\left(3^{n}+5^{n}+7^{n}\right)^{\frac{1}{n}}
$$

is \qquad .
Q. 43 Let $B=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2} \leq 1\right\}$ and define $u(x, y, z)=\sin ^{2}\left(v^{2}\left(1-x^{2}-y^{2}-z^{2}\right)^{2}\right)$ for $(x, y, z) \in B$. Then the value of

$$
\iiint_{B}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) d x d y d z
$$

is \qquad .
Q. 44 Consider the subset $S=\left\{(x, y): x^{2}+y^{2}>0\right\}$ of \mathbb{R}^{2}. Let

$$
P(x, y)=\frac{y}{x^{2}+y^{2}} \text { and } Q(x, y)=-\frac{x}{x^{2}+y^{2}}
$$

for $(x, y) \in S$. If C denotes the unit circle traversed in the counter-clockwise direction, then the value of

$$
\frac{1}{\pi} \int_{C}(P d x+Q d y)
$$

is \qquad
Q. 45 Consider the set $A=\left\{a \in \mathbb{R}: x^{2}=a(a+1)(a+2)\right.$ has a real root $\}$. The number of connected components of A is \qquad —.
Q. 46 Let K be the real vector space of all continuous functions $f:[0,2] \rightarrow \mathbb{R}$ such that the restriction of f to the interval $[0,1]$ is a polynomial of degree less than or equal to 2 , the restriction of f to the interval $[1,2]$ is a polynomial of degree less than or equal to 3 and $f(0)=0$. Then the dimension of V is equal to \qquad .
Q. 47 The number of group homomorphisms from the group \mathbb{Z}_{4} to the group S_{3} is \qquad .
Q. 48 Let $y:\left(\frac{9}{10}, 3\right) \rightarrow \mathbb{R}$ be a differentiable function satisfying

$$
(x-2 y) \frac{d y}{d x}+(2 x+y)=0, \quad x \in\left(\frac{9}{10}, 3\right), \quad \text { and } y(1)=1 .
$$

Then $y(2)$ equals \qquad .
Q. 49 Let $\vec{F}=(y+1) e^{y} \cos (x) \hat{i}+(y+2) e^{y} \sin (x) \hat{j}$ be a vector field in \mathbb{R}^{2} and 6 be a ${ }^{2}$ entinuously differentiable path with the starting point $(0,1)$ and the end point $\left(\frac{\pi}{2}, 0\right)$ Then
equals \qquad .
Q. 50 The value of

$$
\frac{\pi}{2} \lim _{n \rightarrow \infty} \cos \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{8}\right) \cdots \cos \left(\frac{\pi}{2^{n+1}}\right)
$$

is \qquad .

Q. 51 - Q. 60 carry two marks each.

Q. 51 The number of elements of order two in the group S_{4} is equal to \qquad .
Q. 52 The least possible value of k, accurate up to two decimal places, for which the following problem

$$
\begin{aligned}
& y^{\prime \prime}(t)+2 y^{\prime}(t)+k y(t)=0, t \in \mathbb{R} \\
& y(0)=0, y(1)=0, y(1 / 2)=1
\end{aligned}
$$

has a solution is \qquad .
Q. 53 Consider those continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that have the property that given any $x \in \mathbb{R}$,

$$
f(x) \in \mathbb{Q} \text { if and only if } f(x+1) \in \mathbb{Q}
$$

The number of such functions is \qquad .
Q. 54 The largest positive number a such that

$$
\int_{0}^{5} f(x) d x+\int_{0}^{3} f^{-1}(x) d x \geq a
$$

for every strictly increasing surjective continuous function $f:[0, \infty) \rightarrow[0, \infty)$ is \qquad .
Q. 55 Define the sequence

Define $\sigma_{m}=\frac{1}{m} \sum_{n=1}^{m} s_{n}$. The number of limit points of the sequence $\left\{\sigma_{m}\right\}$ is \qquad .
Q. 56 The determinant of the matrix

$$
\left(\begin{array}{llll}
2021 & 2020 & 2020 & 2020 \\
2021 & 2021 & 2020 & 2020 \\
2021 & 2021 & 2021 & 2020 \\
2021 & 2021 & 2021 & 2021
\end{array}\right)
$$

is \qquad .
Q. 57 The value of

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} e^{x^{2}} \sin (n x) d x
$$

is \qquad .
Q. 58 Let S be the surface defined by

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: z=1-x^{2}-y^{2}, \notin \geq 0\right\}
$$

Let $\vec{F}=-y \hat{i}+(x-1) \hat{j}+z^{2} \hat{k}$ and \hat{n} be the continuous unit normal field to the surface S with positive z-component. Then the value of

$$
\frac{1}{\pi} \iint_{S}(\nabla \times \vec{F}) \cdot \hat{n} d S
$$

is \qquad -.
Q. 59 Let $A=\left(\begin{array}{rrr}2 & -1 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & -1\end{array}\right)$. Then the largest eigenvalue of A is \qquad -

to itself defined by $T_{A}(X)=A X-X A$, for all $X \in M_{4}(\mathbb{R})$. The dimension of the range of ${ }^{3} T_{A}$ is \qquad .

END OF THE QUESTION PAPER

Answer Key of JAM-2021 Mathematics (MA) Paper

Note: Question numbers pertain to the question paper published on the JAM 2021 website

Q. No.	Answer
1	D
2	A
3	D
4	A
5	A
6	B
7	C
8	C
9	D
10	B
11	D
12	D
13	B
14	A
15	B
16	A
17	A
18	A
19	A
20	C
21	A
22	B
23	C
24	C
25	B
26	B
27	C
28	A
29	B
30	B

