

Linear Algebra

[For NET/GATE/SET/NBHM/JAM/BHU/CUCET/MSc...etc.]

P. Kalika & K. Munesh
(NET(JRF), GATE, SET)
Email: maths.whisperer@gmail.com
[Linear Algebra Complete Notes]

No. of Pages: 315

Kalika

Linear Algebra

NET(CSIR) / GATE / NBHM / TIFR

Email:- maths.whisperer@gmail.com

Mob. - +91- 9971591806

LINEAR ALGEBRA

18. Determinant - 58

1. Matrix - 1
2. Sq. Matrix - 8
3. Diagonal - 12
4. submatrix - 14
5. Triangular - 18
6. Id. / Transpose - 20
7. Conjugate - 22
8. Trace / Idempotent - 23
9. Involutory - 29
10. Nilpotent - 31
11. Symmetric - 36
12. skew-symmet - 39
13. Hermitian - 43
14. skew-Hermit - 46
15. Orthogonal - 48
16. Unitary - 53
17. minor/Co-factor - 57

Kalika

Index

1. Matrix

(i) Def' of matrix	01-56
(ii) Properties, trace, det.	- 23, 105
(iii) Determinant	- 58-82, 95
(iv) Minor/lcr-factor	- 57
(v) Singular	- 82, 95
(vi) Orthogonal/Unitary	- 51/53
(vii) Adjoint	- 84
(viii) Invertible	- 89
(ix) spectral Radius	- 103
(x) Gerschgorin's thm	- 107
(xi) minimal Poly.	- 111
(xii) Eigen Value / vector	- 115/125
(xiii) A.M (Alg. Multiplicity)	- 119
(xiv) Caley Hamilton	- 118
(xv) Results (E.value)	- 125-129
(xvi) Quadratic form (Positive definite)	- 130-133
(xvii) Bilinear form	- 137

2. Vector Space

1. Subspace	- 141
2. L.C / linear span	- 145
3. FDVS	- 147
4. L.I / L.D	- 149-156
5. Basis / dim	- 157/160
6. Collection of eg.	- 160-168
7. Card of v.s / Basis	- 168-169
8. Coordinate Vector	- 170-171

3. Inner Product Space (172-176)

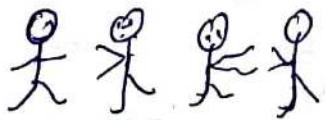
1. Def', Eg., prop.	- 172
2. Norm, Orthogonal	- 173/176
3. Orthonormal	- 179
4. Gram Schmidt & Quo	- 181
5. Orthogonal / matrix Rep'	- 182/185
6. Transition Matrix	- 190
7. Direct sum	- 193
8. Quotient space	- 195
9. Homomorphism	- 196

4. Linear Transformation

1. Diagonalization	-
2. Block matrix	-
3. Rank: Method & use	-
4. Normal & Canonical form	-

5. Eigen Value & Eigen Vector

1. Type of matrices	-
2. E.value & E.vector for name matrices	-
3. Results & Example	-
4. E.value of special matrix	-
5. Diagonalizable matrix	-
* System of Lin. Eqn	-
* many more	---



Abbreviation

- ✓ S.t.b = said to be
- ✓ Id. = identity
- ✓ Col. \Rightarrow = columns
- ✓ LD/LI = Linearly dependent/independent
- ✓ Co-eff = Co-efficient.
- ✓ arb = arbitrary
- ✓ sol n = solution.
- ✓ Hom = Homogeneous.
- ✓ Eq n = equation.
- ✓ E-value = Eigen value.
- ✓ E-vector = Eigen vector
- ✓ A.M = Algebraic Multiplicity
- ✓ G.M = Geometric Multiplicity
- ✓ Ch.poly. = characteristic polynomial
- ✓ Tr(A) or tr(A) = trace of matrix A
- ✓ det A or |A| = determinant of A
- ✓ E.v(A) = Eigenvalue of A.
- ✓ Ch.eq n = characteristic equation

Written by Kalika

- Note: For CSIR-NET, & GATE (also for PSE SET, NBHM, ...), Matrix topic is very very important
- From this topic questions are asked like - finding Linear dependence/independence, solve the system of Linear eqn's, finding eigen-value & vector, rank-nullity, orthogonality, ... etc.
 - In this section, we study type of matrices & ~~special~~ special matrix / special properties, Nature of matrix, finding trace, determinant, Orthogonality, Unitary minors/co-factors and checking for bilinear and Quadratic form (vvi for NET).

MATRIX (30~35 marks)

* A matrix $M = [a_{ij}]_{m \times n}$ (defined on next page) is called —

- Null Matrix : if $a_{ij} = 0 \forall i, j$ (denote $0_{m \times n}$)
- Row Matrix : if $m = 1$ (also called Row vector)
- Column Matrix : if $n = 1$ (also called Col. vector)
- Rectangular Matrix : if $m \neq n$
- Square Matrix : if $m = n$
- Diagonal Matrix : if $m = n$ & $a_{ij} = 0 \text{ for } i \neq j$
- Scalar Matrix : if $m = n$ & $a_{ij} = 0 \text{ for } i \neq j$ & a_{ii} are equal for $i \neq j$

→ More details about matrices are discussed in this PDF.

Matrix

Def: A rectangular representation of no.s either

Complex or real is known as 'matrix Representation' of numbers.

let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$

then —

$\begin{matrix} \leftarrow R_1 \leftarrow \text{Row} \\ \leftarrow R_2 \\ \leftarrow R_m \\ \uparrow \\ C_1 \\ C_2 \\ \vdots \\ C_n \leftarrow \text{col.} \end{matrix}$

(1). Order of matrix is $m \times n$.

(2). R_1, R_2, \dots, R_m represents row & C_1, C_2, \dots, C_n represents column (col.). & denoted as

$$A = [a_{ij}]_{m \times n}$$

where

a_{ij} = element in i^{th} -row & j^{th} column.

(3). Symbolically represented as $\begin{bmatrix} \quad \end{bmatrix}, \begin{pmatrix} \quad \end{pmatrix}, \begin{bmatrix} \quad \end{bmatrix}$

(4). No. of elements in matrix = order of matrix

$$= m \times n.$$

Row Matrix:

A matrix which contains a single row & any no. of col.s. is known as row matrix.

e.g. $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}_{1 \times 3}$

N.B: Row matrix is also known as row-vector.

$$(1i + 2j + 3k)$$

Column Matrix :- A Matrix containing a single column and any no. of rows. e.g. $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3 \times 1}$

NB :- Column matrix is also known as Col. Vector.

Null Matrix :- A matrix is s.t.b 'Null Matrix' or 'Zero Matrix' if each entry of matrix is '0'.

E.g. $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{3 \times 4}$

NB :- Null matrix is denoted as ' $0_{m \times n}$ '.

✓ Null matrix commute as well as anti-commute with each other.

Matrix over field :-

If all the entries of a matrix are taken from a field 'F', then it is s.t.b a matrix over field 'F' or simply 'Field matrix'.

E.g.

$F = \mathbb{R}$, then Real Matrix

$F = \mathbb{C}$, then Complex matrix

NB ✓ If no field is given/mentioned then by default it is treated as Complex matrix.

✓ Two matrices are comparable for being equal if they are of same order as well as same ele.g.

Example:-

$$(1) \cdot A = \begin{pmatrix} 1 & 2 \\ a & b \end{pmatrix}, B = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \Rightarrow \begin{array}{l} x=1, y=2 \\ z=a, w=b \end{array}$$

✓ $a+b$ can take infinite values.

So, infinite no. of ways for $A=B$

$$(2) \cdot A = \begin{pmatrix} 1 & 8 \\ a & b \end{pmatrix}, B = \begin{pmatrix} 3 & 4 \\ 7 & 8 \end{pmatrix}, \text{ Under what condition}$$

Sol :- $\left\{ \begin{array}{l} \text{Here } \because 1 \neq 3, 8 \neq 4, \text{ so we can't take} \\ \text{direct comparison} \end{array} \right. \quad A=B.$

Consider \mathbb{Z}_2 (= the field of integers modulo 2)

$$\mathbb{Z}_2 = \{0, 1\}$$

then $A = \begin{pmatrix} 1 & 0 \\ a & b \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \Rightarrow a=1, b=0$
for $A=B$

(3) How many solⁿ of $A=B$ exists if entries are taken from \mathbb{Z}_p ($p=\text{prime}$), $p>2$. (Que-1).

Sol :- $\because \mathbb{Z}_p = \{0, 1, 2, \dots, p-1\}$

$$\begin{array}{ll} x = a & (\text{p-options}) \\ \text{or} & \\ x = b & (\text{p-options}) \end{array} \quad \left\{ \begin{array}{l} \Rightarrow p^2 = \text{choices} \\ \text{or} \end{array} \right.$$

p^2 solutions

$$(4) \cdot \text{Let } S = \{A = [a_{ij}]_{m \times n} : a_{ij} \in \mathbb{Z}_p, p=\text{prime}\}$$

Then how many elements are there in set

$$S. \quad (\text{i.e } |S| = ?)$$

Sol :- $A = [a_{ij}]_{m \times n} = \begin{bmatrix} p & p & \dots & p \\ p & p & \dots & p \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}_{m \times n} \quad p \rightarrow p \text{ choices}$

Matrices

4

\therefore No. of elements $= \underbrace{p \times p \times p \times \dots \times p}_{= m \times n \text{ times}}$

$$= p^m p^n = p^{m+n}$$

(5) $A = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}, A = B \text{ if } -$

(a) $F = \mathbb{R}$

(b) $F = \mathbb{Z}_3$

(c) $F = \mathbb{F}$

(d) $F = \mathbb{Z}_5$

Sol $\therefore A = B \Rightarrow \underbrace{5 \equiv 2}_{\substack{4 \\ 3 \equiv 0}}, \underbrace{0 \equiv 3}_{\substack{4 \\ 3 \equiv 0}}, \underbrace{1 \equiv 4}_{\substack{4 \\ 3 \equiv 0}}, \underbrace{1 \equiv 7}_{\substack{4 \\ 3 \equiv 0}}, B \equiv 0, B \times 2 \equiv 0$

$\therefore \mathbb{Z}_3 = \{0, 1, 2\}$

$$\therefore A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

Addition of Matrices

A & B can be added if they are of same order.

$$A = [a_{ij}]_{m \times n}, B = [b_{ij}]_{m \times n}$$

then $\exists C$ s.t $C = A + B$ of order $m \times n$

$$\text{s.t } C = [a_{ij} + b_{ij}]_{m \times n} = [c_{ij}]_{m \times n}$$

Properties

(1) Addition of matrices is commutative.

$$\text{i.e. } A + B = B + A$$

(2) If A, B, C are matrices of same order, then

$$A + (B + C) = (A + B) + C \leftarrow \text{Associativity property}$$

Cayley Hamilton theorem

St:- Every sq. matrix satisfies its Ch. poly.

OR

Every Ch. poly. annihilates its matrix.

Let $Ch_A(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0$

then $Ch_A(A) = A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0I = 0$

Results

(1) λ is an E.value of $A \Leftrightarrow \lambda$ is root of

$$Ch_A(x) = 0 \text{ i.e. } |A - \lambda I| = 0$$

Pf: Let λ is an E.value of $A \Rightarrow \exists x \neq 0$ s.t

$$Ax = \lambda x$$

$$\Rightarrow (A - \lambda I)x = 0$$

$$\Rightarrow Bx = 0, \text{ where } B = A - \lambda I \quad (1)$$

Hom. system of eqn

(1) has non-zero soln only when B is singular.

$$\Leftrightarrow |B| = 0$$

$$\Rightarrow (A - \lambda I) = 0$$

$$\text{i.e. } Ch_A(\lambda) = 0$$

$\Rightarrow \lambda$ is an E.value $\Leftrightarrow |A - \lambda I| = 0$

eg. $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, |A - \lambda I| = Ch_A(\lambda) = \lambda^2 + 1 = 0$

$$\Rightarrow \lambda = \pm i \in \mathbb{C}$$

Hence A has no E.value on \mathbb{R} . but 2 E.value in \mathbb{C} .

(2). $\lambda = 0$ be an E-value of A then $\|A - \lambda I\| = 0$
 $\Rightarrow (-1)^m \|A - \lambda I\| = 0$
 $\Rightarrow (-1)^m \|A\| = 0 \quad \{ \text{as } \lambda = 0 \}$
i.e. $\lambda = 0$ is E.V. iff $\|A\| = 0$.

Algebraic Multiplicity

Let λ be E.V. of $A_{n \times n}$. $\text{Ch}_A(\lambda) = 0$.

$\text{Ch}_A^{(1)}(\lambda) = 0, \text{Ch}_A^{(2)}(\lambda) = 0, \dots, \text{Ch}_A^{(m-1)}(\lambda) = 0, \text{Ch}_A^{(m)}(\lambda) \neq 0$
then we can write it as—

$$\text{Ch}_A(\lambda) = (x - \lambda)^m p(\lambda) \quad ; \quad \deg(p(\lambda)) = n - m$$

Here m is called multiplicity (algebraic) of λ .

Results

(1). The sum of A.M. gives the no. of E-values containing multiplicity.

e.g. $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{Ch}_A(\lambda) = \|A - \lambda I\|$
 $\Rightarrow -(\lambda - 1)^3 \cdot \lambda$

$$A \cdot M(\lambda = 0) = 1$$

$$A \cdot M(\lambda = 1) = 3$$

Eigen Space

Let T be L.O. on $V(F)$ & λ be E.V. of T , then define

$$W_\lambda = \{x \in V(F) : T(x) = \lambda x\}$$

VV1

POSITIVE DEFINITE MATRIX

let $A = [a_{ij}]_{n \times n}$ be sq. matrix, then —

(1). A is 'Positive definite' if $x^T A x > 0$
for all $n \times 1$ col. vectors x .

and 'Positive semi-definite' if $x^T A x \geq 0 \quad \forall x$

(2). A is 'Negative definite' if $x^T A x < 0$
 \forall non-zero col. vectors x .

and 'Negative semi-definite' if $x^T A x \leq 0$

* If A is symmetric matrix, then —

∴ i^{th} principal minor of A is the matrix Δ_i
formed by the first i -rows & i -cols of A .

(i.e. det. of $1 \times 1, 2 \times 2, 3 \times 3, \dots$ along principal diag.)

so first principal minor $\Delta_1 = a_{11}$

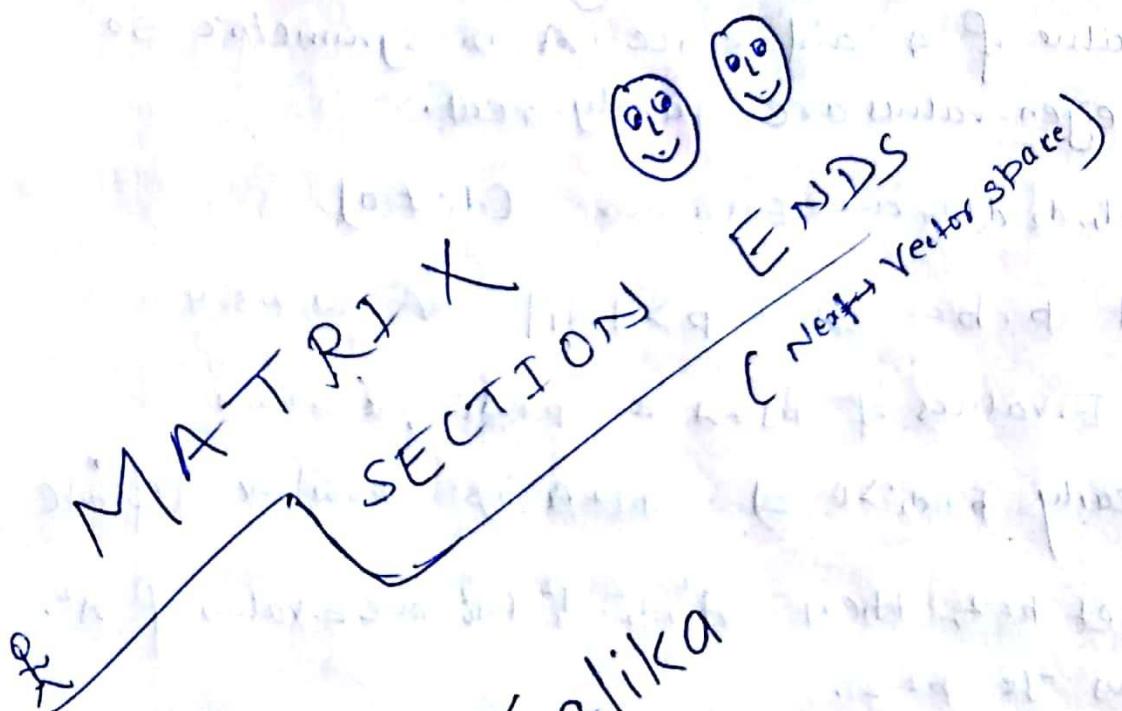
$$\text{2nd} \quad \Delta_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Results

(1). A is 'Positive definite' if all its
principal minors $\Delta_1, \Delta_2, \dots, \Delta_n$ have determinant
strictly positive. i.e.

$$\boxed{\det(\Delta_i) > 0} \quad \forall i \in \mathbb{N}$$

- Result: A real quadratic form $f = x^T A x$ (or matrix A) in n -variables — (134)
- (1). POSITIVE DEFINITE \Leftrightarrow all the E-Values of A are positive.
 - (2). POSITIVE SEMI-DEFINITE \Leftrightarrow if $d_i \geq 0$ & at least one $d_i = 0$
 - (3). NEGATIVE DEFINITE \Leftrightarrow all $d_i < 0$
 - (4). NEGATIVE SEMI-DEFINITE \Leftrightarrow all $d_i \leq 0$ & at least one $d_i = 0$
 - (5). INDEFINITE \Leftrightarrow A has positive & negative E-Values.
 - (6) A Pos. DEF. Real symm. matrix is non-singular.



By: P. Kalika

Vector Space & IPS

This section contains/introduces the basics of V.S., IPS, Basis, dimension, Norm, Orthogonal direct sum, Gram-Schmidt, Diagonalization Block matrix, E-value & Vector, A.M & G.M. results, Examples, ... etc.

For CSIR-NET/GATE/SET/PSC, ... etc. purpose, this section is also important. From Eigen-value & ~~A~~ block, rank-nullity, ... etc, every time question has been asked.

- During preparation, develop your guessing power, so that in exam you can easily identify the correct options, because, in exam you have no more time, you have to adopt short-cut trick to ~~guess~~ get quick answer.



Love Nature & Live Happy

— P. Kalika

Vector Space

Def: Let $(V, +)$ be an abelian group and \mathbb{F} is a field s.t $f: \mathbb{F} \times V \rightarrow V$ defined as

$$f(\alpha, x) = \alpha \cdot x \quad \leftarrow \text{(external composition)}$$

Then we say that V form a vector space (V.S) if —

$$(i) \quad \forall a, b \in \mathbb{F}, x \in V$$

$$(a+b) \cdot x = a \cdot x + b \cdot x$$

$$(ii) \quad \forall a \in \mathbb{F}, x, y \in V, a \cdot (x+y) = a \cdot x + b \cdot y$$

$$(iii) \quad \forall a, b \in \mathbb{F}, x \in V, a \cdot (b \cdot x) = (a \cdot b) \cdot x$$

$$(iv) \quad \forall x \in V, 1 \in \mathbb{F} \text{ s.t } 1 \cdot x = x \in V$$

then 1 is unit in \mathbb{F} .

Example (i), $V = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \text{ under component-wise addition} \right\}$

- $(V, +)$ is an abelian group.

$$\text{Here } \mathbb{F} = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} : a \in \mathbb{R} \right\}$$

$$\text{Let } x = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ & unit of } \mathbb{F} \text{ is } \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = 1$$

then

$$1 \cdot x = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

i.e. $1 \cdot x \neq x$

Hence, V is NOT vector space.

Que(46). If $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ then $A^5 = kA + mI$, then

(i) find k & m

(ii) $A^{-3} = pA + qI$, find p & q .

Solⁿ $\therefore \text{char}(A) = x^2 - 2x - 3 = 0$

$$\Rightarrow A^2 - 2A - 3I = 0 \quad \text{--- (1)}$$

$$\Rightarrow A^2 = 2A + 3I$$

$$\begin{aligned} A^3 &= 2A^2 + 3A = 2(2A + 3I) + 3A \\ &= 7A + 6I \end{aligned}$$

$$A^4 = 7A^2 + 6A = (14+6)A + 21I = 20A + 21I$$

$$A^5 = 20A^2 + 21A = (40+21)A + 60I = 61A + 60I$$

$$\therefore \boxed{k = 61 \text{ and } m = 60}$$

By (1) $I = \frac{1}{3}(A^2 - 2A)$

$$\Rightarrow A^{-1} = \frac{1}{3}(A - 2I)$$

$$\begin{aligned} A^{-2} &= \frac{1}{3}(I - 2A^{-1}) = \frac{1}{3}\left(I - \frac{2}{3}(A - 2I)\right) \\ &= \frac{1}{3}(7I - 2A) \end{aligned}$$

$$\begin{aligned} A^{-3} &= \frac{1}{9}(7A^{-1} - 2I) = \frac{1}{9}\left(\frac{7}{3}(A - 2I) - 2I\right) \\ &= \frac{1}{27}(7A - 20I) \end{aligned}$$

$$\Rightarrow A^{-3} = \frac{7}{27}A - \frac{20}{27}I \Rightarrow$$

$$\Rightarrow \boxed{p = \frac{7}{27} \text{ and } q = -\frac{20}{27}}$$

Que(47). Consider $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 4 \end{bmatrix}$, if $A^{-1} = \alpha I + \beta A + \gamma A^2$

then find α, β & γ .