Category: CSIR NET/GATE # CSIR NET Previous Yr. Que. Papers Collection

Collection of CSIR-NET (Mathematical Science) Previous Year Question Papers year-wise up to 2022 (Latest exam). FREE PDF Download with answer key.

2. Nov-2020 (Que.+Ans, 26 Nov): Download PDF

CSIR NET Mathematical Science Syllabus: Download Syllabus

### GATE Maths Solution (Upto Latest Exam):Click Here

Keep connected with us on

Continue reading “CSIR NET Previous Yr. Que. Papers Collection”

# Latest Handwritten PDF Notes for CSIR-NET, GATE, SET, JAM, PCS, MSc/PhD Exams in Mathematics

Here we have prepared the subject-wise handwritten study materials (PDF Notes) based on the latest syllabus of CSIR-NET, GATE, SET, JAM, PSC, CUCET, BHU, …etc exams. These notes are very very helpful in self-preparation, written in an easy way so that you can easily understand the concepts and be ready for your exams(Read Students Feedback).

6. Integral Equation with Solutions: Download PDF
8. Linear Programming with Sol. (Sample PDF): Buy Now
9. Markov Chain with Solution: Click Here
12. Number Theory with Sol.: Download PDF
13. Numerical Analysis with Sol.
14. Probability & Prob. Distribution: Download Here
18. Sum of Series, Power Series & ROC: Download Here

Not only read theory & solve problems but also make a strategy for exam a/c to your preparation. Keep in mind that, it is not necessary to solve all problems in exams, your guessing power should also be strong which comes by solving a lot of problems.

CSIR-NET Exam Tips/Trick for scoring marks easily: Visit Here

Continue reading “Latest Handwritten PDF Notes for CSIR-NET, GATE, SET, JAM, PCS, MSc/PhD Exams in Mathematics”

# CSIR-NET (Maths) Topic-wise & Year-wise Solutions

Handwritten Solutions of CSIR-NET Mathematics Prev. Yr. Que. Papers (Upto February-2022) are available here. Very very helpful in the preparation of CSIR-NET, SET, GATE, PSC, …. and other equivalent exams. Self-preparation materials (No need for any coaching). Work is in progress.

Note: CSIR NET June-2021 exam was conducted in Feb-2022.

1. General Aptitude Solution (NET 26 Nov 2020 & GATE 2021-2016): Download PDF
2. Sol. of Abstract algebra(Upto Feb-2022, Pages:119): Download PDF
3. Sol. of Complex Analysis(Upto Feb-2022, Pages:138): Download PDF
4. Sol. of Linear algebra(Upto Feb-2022, Pages:228): Download PDF
5. Sol. of NT, NA, LPP & DS (Upto 2022, Pages:156)Download PDF
6. Sol. of ODE, PDE, IE & COV(Upto Feb-2022, Pages:227): Download PDF
7. Sol. of Real Analysis(Upto Feb-2022, Pages:226): Download PDF
8. Combined Solutions (All above Sr. No. 2 – 7): Click Here

### CSIR-NET Year-wise Complete Solution

1. CSIR NET Feb 2022: Download Here
7. Combined Solutions of 2017D, 2018J, 2018D, 2019J, 2019D, 2020N & 2022F: Download Here
Continue reading “CSIR-NET (Maths) Topic-wise & Year-wise Solutions”

# FREE Video Lectures for self-preparation of CSIR-NET, GATE, SET, Lecturer and Asst. Professor Exams.

Here we are providing FREE video crash courses for CSIR NET and GATE for self preparing students. These crash course videos are also useful in preparation NBHM MSc Exam, NBHM PhD Exam, TIFR Mathematics, CUCET, Assistant Professor, Lecturer & other equivalent MSc/PhD Entrance Exams. You need to only focus on understanding concept and tricks explained in these videos. PDF version of each topics for study materials and solutions are available (Check Here).

For any doubt or Query regarding handwritten notes, mail us at maths.whisperer@gmail.com

## ◆ LaTeX and Matlab (Programming)

Work is under process, more videos on solutions and crash courses will be added, keep connected. Join our YouTube channel P Kalika Maths for notifications and videos.

Continue reading “FREE Video Lectures for self-preparation of CSIR-NET, GATE, SET, Lecturer and Asst. Professor Exams.”

# Quick Revision Notes for CSIR-NET, GATE, SET, JAM, Lecturer & Asst. Prof. Exams

Followings Quick Revision notes are VERY VERY helpful in Quick revision of concepts and refreshing your knowledge before starting practicing problems for NET/GATE/PSC and also before an exam. These notes are also useful in concepts revision before an interview of Ph.D./Asst. Prof./Lecturer Exams.

These notes are specially prepared for CSIR-NET, GATE, SET, JAM, Lecturer & Asst. Prof. Exams.

6. Linear Algebra(Sample):
7. COV + Integral Equation: Download PDF
8. PhD Interviews Questions Collection: Available Soon

Quick Revision Package

Continue reading “Quick Revision Notes for CSIR-NET, GATE, SET, JAM, Lecturer & Asst. Prof. Exams”

# GATE Mathematics(MA) Solutions (Topic-wise & Year-wise)

Handwritten Solution of GATE Mathematics for self-preparation. We provide the best quality notes for self preparation of GATE Mathematics for those who can not afford coaching. The best way to prepare for GATE 2022 is to do the practice of problems from Previous Yr. Questions of GATE Mathematics. Start your preparation for GATE 2022 with P Kalika Notes and make a path to success.

### Year-wise Solution

GATE Topic-wise Solution

Buy All PDF Study Materials & Solutions for GATE: Check Here

Continue reading “GATE Mathematics(MA) Solutions (Topic-wise & Year-wise)”

# GATE-2021 Mathematics(MA) Modified Syllabus (New)

Note: The syllabus of GATE-2021 has been revised. New Syllabus is presented here. (Check Old Syllabus of GATE-2020)

Calculus: Functions of two or more variables, continuity, directional derivatives, partial derivatives, total derivative, maxima and minima, saddle point, method of Lagrange’s multipliers; Double and Triple integrals and their applications to area, volume and surface area; Vector Calculus: gradient, divergence and curl, Line integrals and Surface integrals, Green’s theorem, Stokes’ theorem, and Gauss divergence theorem.

Abstract Algebra: Groups, subgroups, normal subgroups, quotient groups, homomorphisms, automorphisms; cyclic groups, permutation groups, Group action,Sylow’s theorems and their applications; Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domains, Principle ideal domains, Euclidean domains, polynomial rings, Eisenstein’s irreducibility criterion; Fields, finite fields, field extensions,algebraic extensions, algebraically closed fields.

Linear Algebra: Finite dimensional vector spaces over real or complex fields; Linear transformations and their matrix representations, rank and nullity; systems of linear equations, characteristic polynomial, eigenvalues and eigenvectors, diagonalization, minimal polynomial, Cayley-Hamilton Theorem, Finite dimensional inner product spaces, Gram-Schmidt orthonormalization process, symmetric, skew-symmetric, Hermitian, skew-Hermitian, normal, orthogonal and unitary matrices; diagonalization by a unitary matrix, Jordan canonical form; bilinear and quadratic forms.

Complex Analysis: Functions of a complex variable: continuity, differentiability, analytic functions, harmonic functions; Complex integration: Cauchy’s integral theorem and formula; Liouville’s theorem, maximum modulus principle, Morera’s theorem; zeros and singularities; Power series, radius of convergence, Taylor’s series and Laurent’s series; Residue theorem and applications for evaluating real integrals; Rouche’s theorem, Argument principle, Schwarz lemma; Conformal mappings, Mobius transformations.

Continue reading “GATE-2021 Mathematics(MA) Modified Syllabus (New)”

# Free Test Series for CSIR-NET, SET, GATE, PSC

We have started providing topic-wise FREE test series for CSIR-NET, GATE, SET Aspirants. After the topic-wise test, we will start full tests. Test your knowledge here.

Note/Instruction:

1. The result will be released on 08:00 PM on respective days of tests. The result will be sent on your email id which you will enter in a test.
2. Related information will be shared on Telegram Channel: https://t.me/pkalika_mathematics
3. We welcome those who are interested in questions setting for a test, write to us on maths.whisperer@gmail.com.
4. Next Test: ODE+PDE+COV+IE Test-1 on 30/05/2020
5. Next Test: Abstract Algebra on 01/06/2020

CSIR-NET, SET & PhD Entrance Test(07/06/2020): Attend Test

Algebra(Abstract+Linear) Tests:-

Analysis(Real+Complex) Tests

• Complex Test-1(28/05/20): Attend Test-1
• Complex Test-2: – – – – – – – – – – –

Applied Part(ODE+PDE+LPP+NA) Tests

Continue reading “Free Test Series for CSIR-NET, SET, GATE, PSC”

# Important Topics for CSIR NET

Comprehensive list of Topic-wise Marks distribution for CSIR-NET Exam. Important Topics of Complex Analysis for CSIR-NET & GATE

# CSIR-NET Mathematics Details Syllabus

CSIR-UGC National Eligibility Test (NET) for JRF & Lecturer-ship
Common Syllabus for PART ‘B’ AND ‘C’

UNIT – 1
Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum.
Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem.
Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral.
Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems.
Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples.

Linear Algebra: Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations.
Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis.
Quadratic forms, reduction and classification of quadratic forms

UNIT – 2
Abstract Algebra: Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements. Fundamental theorem of arithmetic, divisibility in Z, Number Theory: Congruences, Chinese Remainder Theorem, Euler’s Ø- function, primitive roots.
Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley’s theorem, class equations, Sylow theorems.
Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain. Polynomial rings and irreducibility criteria.
Fields, finite fields, field extensions, Galois Theory.

Continue reading “CSIR-NET Mathematics Details Syllabus”

# Free Maths Handwritten Study Materials (Donated)

To help students for their academics and competitive exams, we have started ‘Let’s Do’ Program in which anyone can take Notes FREELY and anyone can contribute*.

The following mathematical notes are contributed by students(mentioned below). These notes are available on FREE OF COST, You may download and share them.

We encourage you (BSc/MSc Students) to contribute your notes (Only scanned, Not hardcopy), your little contribution can help many people. Those who wish to contribute can send scanned notes on maths.whisperer@gmail.com.

(Notes are arranged in Alphabetical order(A-Z) )

• by  Rakhee Kumari, (MSc, CUJ)
• by  M. Sarojini, (MSc, GATE)
• by  M. Sarojini, (MSc, GATE)
• by  M. Sarojini, (MSc, GATE)
• by  M. Sarojini, (MSc, GATE)
6. (New) Partial Differential Equations (PDE): Download PDF
• by  M. Sarojini, (MSc, GATE)
7. Real Analysis
• Sequence(by Laxmi, MSc, Ranchi Univ.): Download PDF
• Sequence, Series & Uniform Continuity(Rahul Anand, MSc, NIT Jalandhar): Download PDF
• Point set Topology(Rahul Anand, MSc, NIT Jalandhar): Download PDF
8. Ring Theory(Rahul Anand, MSc, NIT Jalandhar)Download PDF
9. Free Study Materials(by P Kalika): Download Here

*Term & conditions for Contribution

1. Notes will be Scanned in PDF Format
2. Writing Should be Clear/Clean
3. No Copyright Materials
4. Only Notes Related to Mathematics
Continue reading “Free Maths Handwritten Study Materials (Donated)” # CSIR NET Previous Yr. Que. Papers

Previous Year Question Papers of CSIR-NET (Mathematical Science) year-wise up to 2022 (Latest). FREE PDF Download.

2. Nov-2020 (Que.+Ans, 26 Nov): Download PDF