**CSIR-UGC National Eligibility Test (NET) for JRF & Lecturer-ship**

Common Syllabus for PART ‘B’ AND ‘C’

**UNIT – 1 **

**Analysis: **Elementary set theory, finite, countable and uncountable sets, Real number system as a complete ordered field, Archimedean property, supremum, infimum.

Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine Borel theorem. Continuity, uniform continuity, differentiability, mean value theorem.

Sequences and series of functions, uniform convergence. Riemann sums and Riemann integral, Improper Integrals. Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue measure, Lebesgue integral.

Functions of several variables, directional derivative, partial derivative, derivative as a linear transformation, inverse and implicit function theorems.

Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous functions as examples.

**Linear Algebra:** Vector spaces, subspaces, linear dependence, basis, dimension, algebra of linear transformations.

Algebra of matrices, rank and determinant of matrices, linear equations. Eigenvalues and eigenvectors, Cayley-Hamilton theorem. Matrix representation of linear transformations. Change of basis, canonical forms, diagonal forms, triangular forms, Jordan forms. Inner product spaces, orthonormal basis.

Quadratic forms, reduction and classification of quadratic forms

**UNIT – 2**

**Abstract Algebra:** Permutations, combinations, pigeon-hole principle, inclusion-exclusion principle, derangements. Fundamental theorem of arithmetic, divisibility in Z, Number Theory: Congruences, Chinese Remainder Theorem, Euler’s Ø- function, primitive roots.

Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups, permutation groups, Cayley’s theorem, class equations, Sylow theorems.

Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain, principal ideal domain, Euclidean domain. Polynomial rings and irreducibility criteria.

Fields, finite fields, field extensions, Galois Theory.

Continue reading →### Like this:

Like Loading...